Simple statistical frequency based analysis, such as Pareto analysis, are widely used in conventional accident analysis. However, due to the dynamic and complex nature of construction works, many factors can simultaneously affect or involve the occurrence of accidents in construction projects. Therefore, the identification of the complex relationship between such factors is important to establish relevant and effective safety management policies and/or programs. In this study, characteristic factors and their relationships' contribution to non-fatal accidents in construction projects are analyzed using the association rule mining (ARM) technique. To this end, a total of 59,202 construction accident data are collected from 2015 to 2019 and the ARM is performed to retrieve specific relationships -named as association rules-among classified factors in the data. Characteristics of the retrieved relationships are analyzed and compared with the results of conventional Pareto analysis. Based on the results, it is found that both fall and trip are notable accident forms having characteristic relations with other factors for non-fatal accidents in construction projects. It is also found that small-scale construction, age of 50s, less than 1 month of working period, and architectural construction are important factors for non-fatal accidents in construction projects.
Sungnyemun Gate, Korea's National Treasure No.1, was destroyed by fire on February 10, 2008 and has been re-opened to the public again as of May 4, 2013 after a reconstruction work. Sungnyemun Gate become a national issue and draw public attention to be a major topic on news or research. In this research, text mining and association rule mining techniques were used on keyword of newspaper articles related to Sungnyemun Gate as a cultural heritage from 2002 to 2016 to find major keywords and keyword association rule. Next, we analyzed some typical and specific keywords that appear frequently and partially depending on before and after the fire and newpaper companies. Through this research, the trends and keywords of newspapers articles related to Sungnyemun Gate could be understood, and this research can be used as fundamental data about Sungnyemun Gate to information producer and consumer.
A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.
Journal of the Korean Data and Information Science Society
/
v.21
no.6
/
pp.1147-1154
/
2010
One of the important goals in data mining is to discover and decide the relationships between different variables. Association rules are required for this technique and it find meaningful rules by quantifying the relationship between two items based on association measures such as support, confidence, and lift. In this paper, we presented the evaluation criteria of weighted association rule considering item RFM scores as importance of items. Original RFM technique has been used most widely applied method using customer information to find the most profitable customers. And then we compared general association rule technique with weighted association rule technique through the simulation data.
Journal of Korean Society of Industrial and Systems Engineering
/
v.41
no.2
/
pp.9-15
/
2018
This study is intended to investigate that it is possible to analyze the public awareness and satisfaction of the weather forecast service provided by the Korea Meteorological Administration (KMA) through social media data as a way to overcome limitations of the questionnaire-based survey in the previous research. Sentiment analysis and association rule mining were used for Twitter data containing opinions about the weather forecast service. As a result of sentiment analysis, the frequency of negative opinions was very high, about 75%, relative to positive opinions because of the nature of public services. The detailed analysis shows that a large portion of users are dissatisfied with precipitation forecast and that it is needed to analyze the two kinds of error types of the precipitation forecast, namely, 'False alarm' and 'Miss' in more detail. Therefore, association rule mining was performed on negative tweets for each of these error types. As a result, it was found that a considerable number of complaints occurred when preventive actions were useless because the forecast predicting rain had a 'False alarm' error. In addition, this study found that people's dissatisfaction increased when they experienced inconveniences due to either unpredictable high winds and heavy rains in summer or severe cold in winter, which were missed by weather forecast. This study suggests that the analysis of social media data can provide detailed information about forecast users' opinion in almost real time, which is impossible through survey or interview.
International conference on construction engineering and project management
/
2015.10a
/
pp.627-628
/
2015
Construction defect which can causes economic damage such as schedule delay, cost overrun is a considerably important factor in construction industry. In general, a construction defect features a difficulty to find out causes precisely because it occurs when several interrelated causes combine. Yet, studies have tried to understand the interrelationships between factors are limited. In addition, despite of a tremendous amount of construction data, it's not still enough to analyze them, but tends to depend on experience or know-how of practitioners. Thus, it is necessary to identify underlying causes in influential factors by utilizing related data. This paper analyses Interrelationships between causal factors using Association Rule Mining to discover root causes of construction defects. Confidence and Lift that can be used for presenting the interrelationships of the causes were extracted from 1241 cases in 30 projects in Korea. It is expected that this paper allows the construction managers to discover key factors and make right decisions to reduce occurrence of construction defects. Furthermore, analysis of interrelationships can improve understanding of structural patterns of construction defects.
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.425-433
/
2009
Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. We need a data mining tool to explore a lot of information. There are many data mining tools or solutions; E-Miner, Clementine, WEKA, and R. Almost of them are were focused on diversity and general purpose, and they are not useful for laymen. In this paper we design and implement a web-based data mining tool using PHP and WEKA. This system is easy to interpret results and so general users are able to handle. We implement Apriori algorithm of association rule, K-means algorithm of cluster analysis, and J48 algorithm of decision tree.
International Journal of Computer Science & Network Security
/
v.22
no.6
/
pp.339-345
/
2022
Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.
Journal of the Korean Data and Information Science Society
/
v.25
no.2
/
pp.365-371
/
2014
Association rule of the well-studied techniques in data mining is the exploratory data analysis for understanding the relevance among the items in a huge database. This method has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, similarity measures, etc. By typical association rule technique, we generate association rule that satisfy minimum support and confidence values. Support and confidence are the most frequently used, but they have the drawback that they can not determine the direction of the association because they have always positive values. In this paper, we compared support, basic confidence, and three kinds of confidence measures useful for classification model building to overcome this problem. The result confirmed that the causal confirmed confidence was the best confidence in view of the association mining because it showed more precisely the direction of association.
Journal of the Korean Data and Information Science Society
/
v.22
no.6
/
pp.1113-1121
/
2011
Recently, a variety of data mining techniques has been applied in various fields like healthcare, insurance, and internet shopping mall. Association rule mining is a popular and well researched method for discovering interesting relations among large set of data items. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are three primary quality measures for association rules; support and confidence and lift. In this paper we consider some similarity measures with negative co-occurrence frequencies which is widely used in cluster analysis or multi-dimensional analysis as association thresholds. The comparative studies with support, confidence and some similarity measures are shown by numerical example.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.