• 제목/요약/키워드: association rule mining

검색결과 351건 처리시간 0.022초

Customer Personalized System of eCRM Using Web Log Mining and Rough Set

  • Lee, Jae-Hoon;Chung, Il-Yong;Lee, Sung-Joo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.29-32
    • /
    • 2006
  • In this paper, we propose a customer personalized system that presents the web pages to users which are customized to their individuality. It analyzes the action of users who visit the shopping mall, and preferentially supplies the necessary information to them. When they actually buy some items, it forecasts the users' access pattern to web site and their following purchasable items and improves their web pare on the bases of their individuality. It reasons the relation among the web documents and among the items by using the log data of web server and the purchase information of DB. For reasoning it employs Rough Set, which is a method that searches the association rule and offers most suitable cases by reduces cases. It reasons the web pages by considering the users' access pattern and time by using the web log and reasons the users' purchase pattern by using the purchase information of DB. On the basis of the relation among them, it appends the related web pages to link of users' web pages and displays the inferred goods on users' web pages.

  • PDF

Automatic Payload Signature Update System for the Classification of Dynamically Changing Internet Applications

  • Shim, Kyu-Seok;Goo, Young-Hoon;Lee, Dongcheul;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1284-1297
    • /
    • 2019
  • The network environment is presently becoming very increased. Accordingly, the study of traffic classification for network management is becoming difficult. Automatic signature extraction system is a hot topic in the field of traffic classification research. However, existing automatic payload signature generation systems suffer problems such as semi-automatic system, generating of disposable signatures, generating of false-positive signatures and signatures are not kept up to date. Therefore, we provide a fully automatic signature update system that automatically performs all the processes, such as traffic collection, signature generation, signature management and signature verification. The step of traffic collection automatically collects ground-truth traffic through the traffic measurement agent (TMA) and traffic management server (TMS). The step of signature management removes unnecessary signatures. The step of signature generation generates new signatures. Finally, the step of signature verification removes the false-positive signatures. The proposed system can solve the problems of existing systems. The result of this system to a campus network showed that, in the case of four applications, high recall values and low false-positive rates can be maintained.

연관성 규칙에서 활용 가능한 대칭적 기여 순수 신뢰도의 개발 (The development of symmetrically and attributably pure confidence in association rule mining)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권3호
    • /
    • pp.601-609
    • /
    • 2014
  • 빅 데이터 분석을 위한 데이터마이닝 기법 중의 하나인 연관성 규칙은 지지도, 신뢰도, 향상도 등의 여러 가지 연관성 평가기준을 기반으로 하여 항목집합들 간의 관련성을 찾아내는 데 활용되고 있다. 기본적인 연관성 평가기준들 중에서 가장 많이 활용되고 있는 신뢰도는 연관성의 방향 (음 또는 양)을 알 수가 없다는 단점을 가지고 있다. 이를 보완하기 위한 측도로 순수 신뢰도 기여 순수 신뢰도가 제안되었으나, 이는 전항과 후항이 바뀌면 그 값이 달라지는 문제점이 있다. 본 논문에서는 기존의 신뢰도와 순수 신뢰도, 그리고 기여 순수 신뢰도의 단점을 보완한 연관성 평가 기준으로 네 가지의 대칭적 기여 순수 신뢰도를 제안하였다. 또한 신뢰도와 기여 순수 신뢰도, 그리고 네 가지의 대칭적 기여 순수 신뢰도를 예제를 통하여 비교 분석하였다. 그 결과, 대칭적 기여 순수 신뢰도는 그 부호에 의해 연관성 규칙의 방향을 파악할 수 있는 동시에 전항과 후항이 바뀌어도 그 값이 변하지 않으므로 연관성 규칙을 생성하는 데 매우 유익한 평가 기준이라는 사실을 확인할 수 있었다. 이들 네 가지 대칭적 기여 순수 신뢰도 중에서는 두 종류의 기여 순수 신뢰도의 분자의 합과 분모의 합의 비로 나타나는 측도가 가장 바람직한 것으로 예제를 통하여 확인하였다.

연관 규칙 기반의 상품 검색 데이터베이스 최적화 연구 (A Study on the Product Searching Database Optimization Based on Association Rules)

  • 황현숙;박규석
    • 한국멀티미디어학회논문지
    • /
    • 제7권2호
    • /
    • pp.145-155
    • /
    • 2004
  • 인터넷 쇼핑몰을 구성하는 관리자 입장에서는 사용자 중심의 편리한 검색 기능과 시스템 중심의 빠른 검색 기능을 가지는 것이 매우 중요하다. 전자는 사용자의 다양한 요구를 만족시킬 수 있는 최적화된 입력 매개 변수를 찾아내는 것이며, 후자는 속성이 다른 다양한 입력 변수들을 효과적으로 정규화 하여 빠른 검색 해를 찾아내는 것이다. 본 연구에서는 기본적으로 사용자의 다양한 요구를 최대한 반영하기 위해 다중 속성을 가진 검색 기능은 물론 보다 빠른 검색 기능을 가지기 위한 데이터베이스 최적화 구성에 초점을 두고 있다. 이를 위해 인터넷 쇼핑몰의 검색 특성을 반영할 수 있는 연관 규칙의 척도인 지지도와 신뢰도를 고려한 수정된 연관 알고리즘을 제시하며, 빠른 검색 기능을 가지기 위한 모델관리 시스템을 제안한다. 수행된 시뮬레이션 결과에 의하면 고객의 검색 트랜잭션 수가 증가할수록 전체 평균 검색 시간은 상대적으로 줄어든다.

  • PDF

형식개념분석기법을 이용한 사용자 질의 기반의 연관관계 추출 자동화지원도구의 개발 (On Development of an Automatic Tool for Extracting Association Rules of a user query using Formal Concept Analysis)

  • 김응희;황석형;김홍기
    • 정보처리학회논문지D
    • /
    • 제15D권3호
    • /
    • pp.429-440
    • /
    • 2008
  • 형식개념분석기법(Formal Concept Analysis)은, 주어진 데이터로부터 공통속성을 갖는 객체들을 개념단위로 추출, 계층화하여 데이터에 내재된 개념들의 구조를 가시화 해주는 데이터분석기법으로써, 최근 다양한 분야에서 응용되고 있다. 본 연구에서는, 형식개념분석기법을 토대로, 사용자의 질의에 대한 함의관계(Implication)와 연관관계(Association rule)에 관한 정보추출과, 추출된 제반 정보들을 구조화하여 가시적으로 표현하기 위한 기법을 제안하고, 이를 지원하기 위하여, 함의/연관관계 추출 및 가시화 지원도구인 QAG-Wizard를 개발하였다. 본 연구결과는, 주어진 데이터의 속성을 기반으로 하는 사용자의 질의에 대하여, 데이터에 내재되어 있는 관계정보를 보다 다양하게 추출하고 직관적으로 표현 가능하므로, 데이터분석과 마이닝 뿐만 아니라, 질의기반의 정보검색분야 등에서 다양한 목적에 맞추어 활용될 수 있다.

위치기반 서비스(Location-based Service)의 프라이버시 위험 대응에 있어 사용자 감정(Affect)의 역할 (An Investigation of a Role of Affective factors in Users' Coping with Privacy Risk from Location-based Services)

  • 박종화;정윤혁
    • 한국빅데이터학회지
    • /
    • 제5권2호
    • /
    • pp.201-213
    • /
    • 2020
  • 위험에 대한 인간의 반응은 인지적 요인뿐만 아니라 정서적 요인에도 유의미한 영향을 받는다는 경험적 연구에도 불구하고, 정보 프라이버시 연구에서는 감정적 요인의 역할이 제대로 규명되지 않고 있다. 본 연구는 정서적 관점에서 위치기반 서비스(Location-based service) 사용자의 프라이버시 위험에 대한 대응행위를 탐색하고자 한다. 구체적으로, 본 연구는 세 가지 유형의 개인정보 위협(수집, 해킹, 2차 사용), 두 가지 감정적 반응(걱정, 분노) 및 대응행위(지속적인 사용의도)의 관계를 탐색하였다. 이를 위해 위치기반서비스(Location-based service) 사용자 552 명에 대해 설문조사를 실시하였다. 특정 개인정보 위협에 대한 인식과 특정 감정적 반응의 결합이 지속적 사용의도에 미치는 영향을 분석하기 위해 데이터마이닝 기법 중 하나인 연관규칙(association rule)을 활용하여 분석을 진행하였다. 그 결과 위험에 대한 인식과 정서적 반응의 결합에 따라 사용의도에 차이가 나타났으며, 대체로 개인정보의 2차 사용에 대해 분노의 감정이 유발될 경우 사용의도가 가장 크게 감소하는 것으로 나타났다. 본 연구는 정보 프라이버시 사용자 연구에 감정적 요인을 포함함으로써, 기존의 인지적 접근방식 편향을 보완하고 프라이버시 대응행위에 대한 포괄적 이해를 제공한다는 점에서 학문적 의의가 있다.

소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스 (Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques)

  • 조인동;김남규
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.127-138
    • /
    • 2011
  • 대부분의 연구포털 사이트는 관심 분야의 논문을 획득하고자 하는 연구자를 대상으로 한 서비스를 주로 제공하고 있다. 하지만 이러한 서비스는 정확한 서지사항을 알고 있는 일부 사용자의 경우 손쉽게 이용할 수 있지만, 대부분의 이용자는 원하는 자료를 획득하기 위해 키워드 검색을 통한 반복적 시행착오를 겪게 된다. 특히 사용자가 익숙하지 않은 분야의 논문을 검색하는 경우에는, 찾고자 하는 논문의 적절한 키워드 자체를 알지 못하여 검색에 큰 어려움을 겪게 된다. 이러한 한계를 극복하기 위해 일부 연구포털 사이트에서는 온라인 쇼핑몰의 상품 추천에 주로 사용되어온 연관관계 분석 기반 키워드 추천 서비스를 채택하고 있다. 하지만 연관관계 분석에만 기반한 키워드 추천 방식은 두 키워드간의 단편적인 관계만을 알려줄 뿐, 해당 학술 분야와 관련된 전체 키워드 간의 복합적 연결 관계를 보여주기에는 한계가 있다. 따라서 본 논문에서는 연관관계 분석을 통해 빈발 출현 키워드 쌍을 추출하고 이를 근거로 전체 키워드 간 네트워크를 구축함으로써, 학술 분야별 중심 키워드 및 분야 간 융합을 위한 연계 키워드를 추천하기 위한 방법을 제시하고자 한다.

인터넷 문서빈도를 통해 본 도시순위규모에 관한 연구 -미국 10만 이상의 인구를 갖는 도시들을 사례로- (Rank-Size Distribution with Web Document Frequency of City Name : Case study with U.S incorporated places of 100,000 or more population)

  • 홍일영
    • 한국지역지리학회지
    • /
    • 제13권3호
    • /
    • pp.290-300
    • /
    • 2007
  • 본 연구는 인터넷 문서상에 나타나는 도시 지명의 문서 빈도를 통계량으로 도시규모에 대한 분석을 실시하였다. 검색어가 갖는 의미상의 차이에 따른 조건과 검색의 범위를 제약하면서 나타나는 유의적인 차이점들에 대해 분석하였고, 도시규모분포의 상관계수에 대한 분석을 통해 인구와 문서빈도와의 차이점을 분석하였다. 각 도시의 인구와 문서빈도와 상관관계 분석에서는 검색어의 종류를 보다 공간적의 의미로 제약할수록 더 높은 상관관계가 나타났고, 문서의 종류는 상용, 네트워크, 기관의 경우에 있어서 높은 상관관계가 나타났다. 그리고 인구와 문서빈도의 통계량을 이용한 군집분석을 통해서, 인구에 비해 더 많은 혹은 낮은 문서빈도를 보이는 도시들을 파악하였다. 이와 같은 분석은 웹 문서라는 정보통신사회 속에서 반영되는 각 도시의 특성을 분석하는 새로운 방안을 제시한다는 점에서 큰 의미를 갖는다고 할 수 있다.

  • PDF

구매순서를 고려한 개선된 협업필터링 방법론 (Considering Customer Buying Sequences to Enhance the Quality of Collaborative Filtering)

  • 조영빈;조윤호
    • 지능정보연구
    • /
    • 제13권2호
    • /
    • pp.69-80
    • /
    • 2007
  • 고객의 선호도는 시간에 따라 변화하지만 기존 협업필터링기법(Collaborative Filtering : CF)은 정적인 데이터만을 다룬다. 이는 기존 CF 기법이 특정 기간 동안 고객의 구매 여부만 고려할 뿐 고객의 구매순서를 사용하지 않기 때문이다. 따라서 기존 CF 기법은 고객의 동적인 데이터인 구매순서를 고려함으로써 추천의 품질을 높일 가능성이 있다. 본 연구에서는 고객의 구매순서를 활용함으로써 CF 기법의 추천 품질을 향상시키는 새로운 상품추천 방법론을 제안한다. 즉, 군집분석기법인 자기조직화지도(Self-Organizing Map : SOM)를 활용하여 고객의 구매순서를 파악한 후 연관규칙탐사(Association Rule Mining : ARM)를 사용하여 고객들의 구매순서 중 일정 정도의 통계적인 타당성을 갖는 구매순서 패턴을 찾아내어 이를 추천 시에 활용한다. 대형 백화점의 구매자료에 적용하여 제안한 방법론의 효과성을 실험한 결과 제안한 방법론이 기존 CF 기법보다 우수한 추천품질을 가지고 있음이 실증적으로 확인되었다.

  • PDF

유사도와 연관규칙분석을 이용한 암호화폐 추천모형 (Cryptocurrency Recommendation Model using the Similarity and Association Rule Mining)

  • 김예찬;김진영;김채린;김경재
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.287-308
    • /
    • 2022
  • 최근 비트코인을 필두로한 암호화폐의 폭발적인 성장이 금융 시장의 주요 이슈로 떠오르고 있다. 이에 전 세계적인 암호화폐 투자의 관심이 증가하고 있지만, 24시간 365일 운영되는 시장과 가격 변동성, 그리고 기하 급수적으로 증가하고 있는 암호화폐 종류는 암호화폐 투자자들에게 리스크로 제공되고 있어, 특히 암호화폐 포트폴리오를 구상하는데 있어 추천에 적합하지 않는 암호화폐들을 구분하여 투자자들의 리스크를 감소시킬 수 있는 연구의 필요성이 제기되고 있다. 이에 본 논문은 기존에 있었던 단순히 암호화폐 가격의 미래를 예측하여 수익률을 극대화 하거나, 수익률에 초점을 맞추어 암호화폐 포트폴리오를 구성하는 연구들과 달리, 투자자들의 성향을 반영하고, 투자에 적합한 암호화폐를 머신러닝 기법 중 하나인 Apriori 알고리즘을 활용하여 추천하되, 추천에 적합한 알트코인들을 비트코인의 유사도와 연관규칙을 중심으로 선별하여, 투자자들의 리스크를 감소시킬 수 있는 적합한 추천 방식과 해석을 제시한다.