• 제목/요약/키워드: association rule mining

검색결과 351건 처리시간 0.03초

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Association Rule of Gyeongnam Social Indicator Survey Data for Environmental Information

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권1호
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze Gyeongnam social indicator survey data by 2001 using association rule technique for environment information. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We can use to environmental preservation and environmental improvement by association rule outputs

  • PDF

올바른 연관성 규칙 생성을 위한 의사결정과정의 제안 (Decision process for right association rule generation)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.263-270
    • /
    • 2010
  • 데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 체계적이고도 자동적으로 찾아내는 기법이다. 데이터마이닝의 중요한 목표 중의 하나는 여러 변수들 간의 관계를 발견하고 결정하는 것이다. 연관성 규칙은 항목 집합으로 표현된 트랜잭션에서 각 항목간의 연관성을 반영하는 규칙으로서, 항목 집합간의 관계를 지지도, 신뢰도, 순수 신뢰도 등과 같은 흥미도 측도에 의해 명확히 수치화함으로써 두 개 이상의 항목집합간의 관련성을 표시해주기 때문에 현업에서 많이 활용되고 있다. 본 논문에서는 기존에 많이 활용되고 있는 흥미도 측도인 신뢰도와 순수 신뢰도의 문제점을 보완하여 연관성 규칙을 올바르게 생성하기 위한 새로운 의사결정과정을 제안하고자 한다. 본 논문에서 제안하는 의사결정과정은 특히 스트리밍 데이터베이스에서의 연관성 규칙을 탐색하는 데 효율적이다.

Environmental Consciousness Data Modeling by Association Rules

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권3호
    • /
    • pp.529-538
    • /
    • 2005
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a riven large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

Environmental Consciousness Data Modeling by Association Rules

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 추계학술대회
    • /
    • pp.115-124
    • /
    • 2004
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a given large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

  • PDF

Relation for the Measure of Association and the Criteria of Association Rule in Ordinal Database

  • 박희창;이호순
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.197-213
    • /
    • 2003
  • One of the well-studied problems in data mining is the search for association rules. The goal of association rule mining is to find all the rules with support and confidence exceeding some user specified thresholds. In this paper we consider the relation between the measure of association and the criteria of association rule for ordinal data.

  • PDF

연관규칙과 순차패턴을 이용한 프로세스 마이닝 (A Process Mining using Association Rule and Sequence Pattern)

  • 정소영;권수태
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

데이터마이닝과 사례기반추론 기법에 기반한 인터넷 구매지원 시스템 구축에 관한 연구 (A Study on the Development of Internet Purchase Support Systems Based on Data Mining and Case-Based Reasoning)

  • 김진성
    • 한국경영과학회지
    • /
    • 제28권3호
    • /
    • pp.135-148
    • /
    • 2003
  • In this paper we introduce the Internet-based purchase support systems using data mining and case-based reasoning (CBR). Internet Business activity that involves the end user is undergoing a significant revolution. The ability to track users browsing behavior has brought the vendor and end customer's closer than ever before. It is now possible for a vendor to personalize his product message for individual customers at massive scale. Most of former researchers, in this research arena, used data mining techniques to pursue the customer's future behavior and to improve the frequency of repurchase. The area of data mining can be defined as efficiently discovering association rules from large collections of data. However, the basic association rule-based data mining technique was not flexible. If there were no inference rules to track the customer's future behavior, association rule-based data mining systems may not present more information. To resolve this problem, we combined association rule-based data mining with CBR mechanism. CBR is used in reasoning for customer's preference searching and training through the cases. Data mining and CBR-based hybrid purchase support mechanism can reflect both association rule-based logical inference and case-based information reuse. A Web-log data gathered in the real-world Internet shopping mall is given to illustrate the quality of the proposed systems.