• Title/Summary/Keyword: assignment problem

Search Result 649, Processing Time 0.026 seconds

A Genetic Algorithm Approach to the Frequency Assignment Problem on VHF Network of SPIDER System

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.56-69
    • /
    • 2000
  • A frequency assignment problem on time division duplex system is considered. Republic of Korea Army (ROKA) has been establishing an infrastructure of tactical communication (SPIDER) system for next generation and it will be a core network structure of system. VHF system is the backbone network of SPIDER, that performs transmission of data such as voice, text and images. So, it is a significant problem finding the frequency assignment with no interference under very restricted resource environment. With a given arbitrary configuration of communications network, we find a feasible solution that guarantees communication without interference between sites and relay stations. We formulate a frequency assignment problem as an Integer Programming model, which has NP-hard complexity. To find the assignment results within a reasonable time, we take a genetic algorithm approach which represents the solution structure with available frequency order, and develop a genetic operation strategies. Computational result shows that the network configuration of SPIDER can be solved efficiently within a very short time.

  • PDF

Sample Average Approximation Method for Task Assignment with Uncertainty (불확실성을 갖는 작업 할당 문제를 위한 표본 평균 근사법)

  • Gwang, Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The optimal assignment problem between agents and tasks is known as one of the representative problems of combinatorial optimization and an NP-hard problem. This paper covers multi agent-multi task assignment problems with uncertain completion probability. The completion probabilities are generally uncertain due to endogenous (agent or task) or exogenous factors in the system. Assignment decisions without considering uncertainty can be ineffective in a real situation that has volatility. To consider uncertain completion probability mathematically, a mathematical formulation with stochastic programming is illustrated. We also present an algorithm by using the sample average approximation method to solve the problem efficiently. The algorithm can obtain an assignment decision and the upper and lower bounds of the assignment problem. Through numerical experiments, we present the optimality gap and the variance of the gap to confirm the performances of the results. This shows the excellence and robustness of the assignment decisions obtained by the algorithm in the problem with uncertainty.

Hierarchical Lazy Greedy Algorithm for Weapon Target Assignment (무기할당을 위한 계층적 레이지 그리디 알고리즘)

  • Jeong, Hyesun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.381-388
    • /
    • 2020
  • Weapon target assignment problem is an essential technology for automating the operator's rapid decision-making support in a battlefield situation. Weapon target assignment problem is a kind of the optimization problem that can build up an objective function by maximizing the number of threat target destructed or maximizing the survival rate of the protected assets. Weapon target assignment problem is known as the NP-Complete, and various studies have been conducted on it. Among them, a greedy heuristic algorithm which guarantees (1-1/e) approximation has been considered a very practical method in order to enhance the applicability of the real weapon system. In this paper, we formulated the weapon target assignment problem for supporting decision-making at the level of artillery. The lazy strategy based on hierarchical structure is proposed to accelerate the greedy algorithm. By experimental results, we show that our algorithm is more efficient in processing time and support the same level of the objective function value with the basic greedy algorithm.

A Berth Assignment Planning for a Public Terminal (공공터미널의 선석배정계획에 관하여)

  • Keum, J.S.;Lee, H.G.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.7-15
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. A berth can be assigned to incoming vessels and operated in tow different ways: as a common user berth, as a preference berth. A common user berth is a berth that any ship calling at a port may be permitted to use according to her time of arrival and to priorities as determined by the port authority. In this paper, we concerned with various types of mathematical programming models for a berth assignment problem to achive an efficient berth operation. In this paper, we focus on a reasonable berth assignment programming in a public container terminal in consideration of trade-off between server and user. We propose a branch and bound algorithm & heuristic algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) with which the trade-off between servers and users can be considered. The berth assignment problem is formulated by min-max and 0-1 integer programming and developed heuristic algorithm to solve the problem more easily instead of branch and bound method. Finally, we gave the numerrical solutions of the illustrative examples.

  • PDF

Metaheuristics for reliable server assignment problems

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1340-1346
    • /
    • 2014
  • Previous studies of reliable server assignment considered only to assign the same cost of server, that is, homogeneous servers. In this paper, we generally deal with reliable server assignment with different server costs, i.e., heterogeneous servers. We formulate this problem as a nonlinear integer programming mathematically. Our problem is defined as determining a deployment of heterogeneous servers to maximize a measure of service availability. We propose two metaheuristic algorithms (tabu search and particle swarm optimization) for solving the problem of reliable server assignment. From the computational results, we notice that our tabu search outstandingly outperforms particle swarm optimization for all test problems. In terms of solution quality and computing time, the proposed method is recommended as a promising metaheuristic for a kind of reliability optimization problems including reliable sever assignment and e-Navigation system.

Robust Pole Assignment of Uncertain Linear Systems (불확정성 선형 시스템의 강인 극점 배치)

  • Kim, Jae-Seong;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • It is well-known that the poles of a system are closely related with the dynamics of the systems, and the pole assignment problem, which locates the poles in the desired regions, in one of the major problem in control theory. Also, it is always possible to assign poles to specific points for exactly known linear systems. But, it is impossible for the uncertain linear systems because of the uncertainties that originate from modeling error, system variations, sensing error and disturbances, so we must consider some regions instead of points. In this paper, we consider both the analysis and the design of robust pole assignment problem of linear system with time-varying uncertainty. The considered uncertainties are the unstructured uncertainty and the structured uncertainty, and the considered region is the circular region. Based on Lyapunov stability theorem and linear matrix inequality(LMI), we first present the analysis result for robust pole assignment, and then we present the design result for robust pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

A New Heuristic for the Generalized Assignment Problem

  • Joo, Jaehun
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.31-52
    • /
    • 1997
  • The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks to m workstations such that each task is assigned to exactly one workstation, subject to the capacity of a workstation. In this paper, we presented a new heuristic search algorithm for GAPs. then we tested it on 4 different benchmark sample sets of random problems generated according to uniform distribution on a microcomputer.

  • PDF

A New Heuristic for the Generalized Assignment Problem

  • 주재훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.31-31
    • /
    • 1989
  • The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks to m workstations such that each task is assigned to exactly one workstation, subject to the capacity of a workstation. In this paper, we presented a new heuristic search algorithm for GAPs. Then we tested it on 4 different benchmark sample sets of random problems generated according to uniform distribution on a microcomputer.

Development of multiclass traffic assignment algorithm (Focused on multi-vehicle) (다중계층 통행배분 알고리즘 개발 (다차종을 중심으로))

  • 강진구;류시균;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.99-113
    • /
    • 2002
  • The multi-class traffic assignment problem is the most typical one of the multi-solution traffic assignment problems and, recently formulation of the models and the solution algorithm have been received a great deal of attention. The useful solution algorithm, however, has not been proposed while formulation of the multi-class traffic assignment could be performed by adopting the variational inequality problem or the fixed point problem. In this research, we developed a hybrid solution algorithm which combines GA algorithm, diagonal algorithm and clustering algorithm for the multi-class traffic assignment formulated as a variational inequality Problem. GA algorithm and clustering algorithm are introduced for the wide area and small cost. We also performed an experiment with toy network(2 link) and tested the characteristics of the suggested algorithm.

ON THE RANDOM n×n ASSIGNMENT PROBLEM

  • Lee, Sung-Chul;Zhonggen, Su
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.719-729
    • /
    • 2002
  • Consider the random n $\times$ m assignment problem with m $\geq$ $_{i,j}$ Let $u_{i,j}$ be iid uniform random variables on [0, 1] and exponential random variables with mean 1, respectively, and let $U_{n, m}$ and $T_{n, m}$ denote the optimal assignment costs corresponding to $u_{i, j}$ and $t_{i, j}$. In this paper we first give a comparison result about the discrepancy E $T_{n, m}$ -E $U_{n, m}$. Using this comparison result with a known lower bound for Var( $T_{n, m}$) we obtains a lower bound for Var( $U_{n, m}$). Finally, we study the way that E $U_{n, m}$ and E $T_{n, m}$ vary as m does. It turns out that only when m - n is large enough, the cost decreases significantly.tly.