REHS Bl B1R
19974 5AH 31

A New Heuristic for the Generalized
Assignment Problem

Jaehun Joo*

ABSTRACT

The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks
to m workstations such that each task is assigned to exactly one workstation, subject to the
capacity of a workstation.

In this paper, we presented a new heuristic search algorithm for GAPs, Then we tested it on
4 different benchmark sample sets of random problems generated according to uniform

distribution on a microcomputer.

1. Introduction

The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks to m
workstations such that each task is assigned to exactly one workstation, subject to the capacity of a
workstation. The GAP is different from the ordinary assignment problem since an amount of @ (=0)
is required by a workstation i to do task j.

We may formulate the GAP as follows.

Minimize z = Zi€1 £i€; x; (1
s.t. T€ixy =1 for each j€J (2)
3i€; aixij < by for each i€ I (3)
x =0orl for each i€l, j€J (4)
[={l..m}
J = {1,..n}

Where, n . number of tasks

* Department of Information Industry, Dongguk University

32 Jaehun Joo AFL

m : number of workstations

ajj : resource required by workstation i to do task j
cij © cost of assigning task j to workstation i

bi : capacity of workstation i

Xij [1, if task j is assigned to workstation i

0, otherwise

There are many applications of the generalized assignment model which is an important class of
network models. Fisher and Jaikumar[8] have developed a method for vehicle routing that is based on
a generalized assignment model in which the tasks correspond to items to be delivered and the
workstations to trucks. Ross and Soland[25] have shown certain facility location problems can be
converted to the GAPs. Other applications include assigning software development tasks to
programmers, assigning jobs to computer networks(6], and designing communication networks with
capacity constraints{19]. Moreover, the problem appears as a subproblem in certain network design
problems[20]. Recently Gavish and Pirkul(12] extend the GAP application to address the
multi-resource GAP(MRGAP), in which workstations have a limited availability of a set of resources.
The MRGAP has an important application in the trucking industry.

To find an optimal solution of the GAP, Ross and Soland[25] and Martello and Toth[22] developed
a branch-and-bound method respectively. Fisher, Jaikumar and Van Wassenhove[9] developed an
optimization algorithm exploiting branch-and-bound method in which a lower bound of the GAP is
obtained from a Lagrangian relaxation in which capacity constraint set(2) is dualized. Guignard and
Rosenwein[20] developed the dual based algorithm which improved the optimization algorithm of
Fisher, Jaikumar and Wassenhove[9]. The dual based algorithm is so far known to be best among
optimization algorithms. Amini and Racer[5] presented the heuristic approach which was called
variable-depth-search heuristic(VDSH), to obtain the near optimum for the GAP.

The GAP is known to be NP-hard since the NP complete 2-partition problem is reducible to it
Given n real numbers A, .., A, the 2-partition problem asks if there is a set S<{l, .., n} such
that ;;A, = ,Z&A’ . This problem is equivalent to a GAP with m = 2, aj, = ay = A, for all
Loby=b, = I;A;/Z and c; arbitrary[9].

A heuristic approach may be justified to solve the large scale problems which might be represented
by the GAP in the real-world. The VDSH of Amini and Racer has the limitation that may be unable
to produce a feasible solution for some problems which are feasible.

In this paper, we present a new heuristic search algorithm based on the idea that the neighborhood
of solutions historically found good must be thoroughly searched, whereas other regions should not be

completely restricted for the search process. The heuristic consists of three phases. First phase scans a

B4 1B A New Heuristic for the Generalized Assignment Problem 33

feasible solution by adjusting the available capacity. Second phase improves the incombent solution by
exchanging the allocations of two tasks. Finally, the heuristic proceeds multiple swapping of task
allocations. Then we tested our algorithm on 4 different benchmark sample sets of random problems
generated according to uniform distribution on a microcomputer. To verify the efficiency of our
algorithm more rigorously, we categorized each class of sample problems as “small"(n =10, 20, m = 3,
5) or “large”(n = 50, 100, 200, m = 5, 10, 20) and measured the computational running time and the

relative error from optimum or lower bounds.

2. Heuristic Search Method

2.1 Qutline of the Heuristic Search Method and Notations

To describe easily the heuristic, we represented the GAP as the table form which is similar to
transportation table as shown in table 1. Each square(or cell) in ith row and jth column of table
corresponds to a variable x; Each cell (i, j) has a cost(cy) and a resource requirement(a;). Last

column of table 1 includes capacities of workstations, We compute a_,y which is the criterion for
making the initial assignment of tasks to workstations as follows:

- = *
a; = Cj di,'/ b,‘

Initial assignments based on the criterion of minimum Z,; are performed. When the further
assignments by using this criterion are infeasible, the second phase of the heuristic performs two types

of procedures to increase available capacity of workstations: movement of the task assigned to a
workstation to a different workstation and swapping the resource assignments of two tasks. The second
procedure of the phase attempts to assign an unassigned task to a workstation while simultaneously
removing an assigned task from it.

If task j is assigned to workstation i, the cell of the table 1 corresponding to x; = 1 is called an
assigned cell.

We defined the following value, variables, and sets:

b, : available capacity of workstation i
b,-' = bi_zjejaijxij """"""""""""""""" (5)
J: set of unassigned tasks(or columns):

J = GEFEmxy=00 emeeeeeemememmmeemeeeeee ®

34 Jaehun Joo mafe

AC,;: index of workstation to which task j is assigned.
S;: set of tasks that may be moved from AC; to workstation i

S; = a;< b and AC, # i for all j& J} -----=m-m-mmmmmmmmmmmmm oo 7
DC; : set of tasks assigned to workstation i while satisfying

a; = az -b; in case of assigning an unassigned task ;* to
workstation i

DC; =1{j: AC; =ianda; = ag - b/ forall j&€ J in agiven ;€ J}---—------- (8)
S: set of pairs (i, j) satisfying S; given by (7) for all I
A ;¢ amount of changes in cost by making a movement of the assignment of task j

into workstation i

Ay=cyi - O + 8 s (9)

Coj» if AC, = io # 0

where, &

Penalty__cost, otherwise. Where penalty_ cost is big-M.
In case of AC; = 0, the number of the
unassigned column decreases,
8 = Zjercoj - | J | *penalty_cost, where J is a set of

unassigned tasks that are able to be assigned to workstation P

Before giving a further description of the heuristic method, we defined the following retangular loops
associated with table 1. The rectangular loop is an ordered sequence of four different cells satisfying
the following conditions:

1) Any two consequence cells lie in either the same row or same column

2) No three consecutive cells lie in the same row or column

3) The last cell in the sequence has a row or column in common with the first cell in the
sequence,

In definition of a loop, the first cell is considered to follow the last cell, so the loop may be thought
of as a closed path. The simple concept of the loop will be applied to improvements of a given solution

in last phase of the heuristic.

El44 B A New Heuristic for the Generalized Assignment Problem 35

Table 1: Table Form of the Generalized Assignment Problem

1 i n b
1 cufan) cijlay) Cin(ain) [}
i ci(ai) } cij(ay) . Cinain) by
m le(aml) . ij(amj) . Cmn(amn) bm

2.2 Procedure

Phase I: Initial Assignments
This phase makes assignments sequentially by using the criterion based on the minimum a_v

Step 1: Compute a; for all i and j
a; = ci*ay/b;
Let 7 ={l,..n, AC;, = 0for all j bi’ = bifor all i, and z = 0
Step 2: Determine a cell with minimum a_,-,- among the unassigned cells while satisfying constraint

(3).

(¢°,77) = arg min e e, ‘a; that satisfies b; - ay 2 0.

Step 3: If we can't determine an incoming cell (i°,;%), go to step 4. Otherwise, let J = J -
{i", AC; =1, b; = b; - Qinjn, 2= 2+ Cjuju, and go to step 2.
Step 4: If J = &, go to Phase II. Otherwise, go to phase IL

Phase II: Adjusting Feasibility and Making Reassignments

In the case 7 # @ through the initial assignments, the assignment criterion based on a_i,
addressed to the cost minimization rather than feasibility, Thus we needed to relax the rigorous cost

minimization. This step scans the unassigned cells on which an amount of resource requirement is less

than the available capacity. Then this step tries to increase the overall feasibility that is the possibility

of reducing | J |.

Step 1: Determine S; given by (7) for all i.

36 Jachun Joo RBLL$

Step 2: If S; = @ for all i, go to step 5. Otherwise, compute A given by (9) for all (ij}€S,
where S = U }"=IS;- and S; is a set of pairs (7,7) for allj € S; in a given i . Then select an
incomming cell, (#°,7%) = arg min (; jes Dy .

Step 3: Move the task j* from AC;. to i*. Assign the unassigned task j to the workstation 4

for all j€ f, where ¥ = AC '+ and J is a set of unassigned tasks that are able to be assigned to

the workstation #°. Then update z. AC;, and J. Also update b; and S; fori = " and 2,

Step 4: If _] = &, go to phase IlI. Otherwise, go to step 5.

Step 5: Select arbitrary an unassigned task j'E 7 and compute WD; given by (10) for all i
Determine a workstation i in the given column j: ¢ = arg min; WD;. Then determine DC;
given by (8). In case of DC; = &, determine a workstation among the others excluding i in the
obvious analogous manner. Let a pair of i and j' be an incomming cell. Determine an outgoing cell
which is a pair of i and 7, where 10 = arg max jepc,@;; -

Step 6: In case of no incomming cell exists in step 5 and S; = & in step 2, the heuristic can’t
find a feasible solution. Otherwise, update 2, AC;, and J. Then update b;’ and S;., and go to
step 2.

In step 5, we can compute WD; for j'e 7] as follows:

WD; = D; *Nl + ¢y *Nllforalli = -—=---=--m-=mmemmmmommomeeee (10)
Where, D; = a;—b;
¢y =cy - min,cy
NI and NII: weight given by user
The step 5 allows the user to choose the weight given to the feasibility and the cost. In the case of
which NI is equal to 1.0 and NII is equal to 00, WD becomes D, where D means the diffrence
between the available capacity and the resource requirement. The heuristic which gives the priority for

the unassigned cell with the minimum value of D may become a nice method of quickly finding a
feasible solution, In the case of which NI is equal to 0.0 and NII is equal to 1.0, WD is equal to —E'

where ¢ means the regret cost. Thus, we can find a good solution by using the criterion giving the
priority of allocation to the unassigned cell with minimum regret cost.
In step 5, the problem determining the outgoing cell can be formulated into knapsack model[9]. But

the heuristic chooses the cell having maximum a;j as an outgoing cell,

Blak Bl A New Heuristic for the Generalized Assignment Problem 37

Phase M: Solution Improvements

To improve the incumbent solution, the heuristic performs two search processes. The first step either
reassigns a task from one workstation to another, or swaps the assignments of two tasks. The second
step simultaneously swaps the assignments of two or more tasks by applying a feasible loop

construction method.
Phase M-1: Single Swap

Step 1: If S; = @ for all i, go to phase IM-2. Otherwise, go to step 2.
Step 2: Check cost savings accuring from the assignment of task j to workstation i for all (i, })

given by a pair of i and j€ S;.
Step 3: Determine the best swap that results in largest cost savings.

Step 4: Update the incumbent solution and S;.
Step 5: Repeat steps 1-4 until no further reduction in cost exists.

We need additional descriptions for steps 2 and 3 to understand them more easily. Let arbitrary pair
of i and jin a given S, be (i°, j°). Move a task j* from workstation AC; to i* and compute the
changed amounts of cost, 8] = Ciuje - Cpjx, Where zO=AC,-.. Let the set of tasks that satisfy
the capacity constraint, by+ apis = ag for j # ;° and AC;, = # be J. Then determine a

task j° producing the largest decreases in cost among the elements of]' and put 8 = cpp—cip

where i = AC,.
In step 3, we can compute & as follows:
1. if 8 =0
5 =

01 + &y, Otherwise
In case of & > 0, reassign the task 7° to workstation . (¢*,;%) is called an incomming cell

and (°,7%) is an outgoning cell. Otherwise, reassign the task j* to workstation #* and the task 7°
to . (7*,7°) and (°, 7°) become the incomming cells, and (#°,7*) and (AC,D,]O) become the

outgoing cells,

Phase M-2: Multiple Swaps

To permute the assignments of p tasks, p<n, this step constructs a rectangular loop composed of

four cells at each iteration and finds a feasible loop with additional incomming and outgoing cells to

38 Jachun Joo BENe

Table 2: An example of rectangular loop

h 2 J3

il o ® érﬁ
; I

| @ o o

improve the incumbent solution. The method permuting the assignments of p tasks is as follows,

Assumed that AC; = 7, ACp = i, and AC;3 = iy in table 2, The loop /; that satisfies
two constraints, b;l + apy = ap and b;z + app = apy is feasible, If b;u + aiq = aap
and b;z + apz = apy, a loop /y is also feasible, In case of moving the task 7; to a given
workstation 7, multiple feasible loops may exist. And also we may move the task j; from
workstation 7; to another workstation i, where i # ;. Therefore many feasible loops may result
from making movement of task j;. Let the set of feasible loops accured by making movement of a
task 7, be L',

In case of either &; + az - Qap = by or by + App - App = by in a given feasible loop
l;, we may reduce the cost by moving the task j that is neither 7, nor js, to #; or . Let the
largest decrease in cost through these movements be &;. The loop that produces the greatest cost
savings & among the elements of L’ results in best reassignments of p tasks. Assumed that the best
feasible loop is (7, /1) - (49, /1) - (4, 79) - (41, jo). We can figure out & as follows:

61.if 61(0and 62 >0
0; + &, Otherwise, where 6 = cap + cpy -~ Can - Cop

To reduce redundant scan of loops, this phase proceeds the following steps.

Step 1: Put j; =1

Step 2: Find the best permutation through movement of task 7; by using loop construction and
additional movements. Let an amount of change in cost be 8.

Step 3: If 8 { 0, reassign related tasks and update the incumbent solution.

=144 Bl A New Heuristic for the Generalized Assignment Problem 39

Step 4: Put 54 = 75, + L
Step 5: Repeat steps 2-4 until 7; = n and go to step 6.
Step 6: In case of no further reduction in cost exists, terminate. Otherwise, go to step 1.

3. An Example

Let us illustrate the previous algorithm using a simple problem. This problem has four tasks and

three workstations. Table 3 shows a table form of the generalized assignment problem including a_u

Table 3: Table Form of the Example Problem

Cij(aij)

[2] b
7(15) 9(15) 24(10) 27(5) 19
[55] [7.1] [12.6] [7.1]

46(12) 17(8) 15(12) 11(12) 13
[42.4] [10.4] (13.8] [10.1]

30(8) 4(15) 12(10) 20(14) 18
[13.3] [3.3] (6.6] [15.5]

Phase I: Initial Assignment

As shown in table 4, assign 2nd task to 3rd workstation, 1st task to 1st workstation, and 4th task to
2nd workstation.

Table 4: Initial Assignments

c(a) v’
7(15) * 9(15) 24(10) 27(5) 4
46(12) 17(8) 15(12) 11(12) * 1
30(8) 4(15) * 12(10) 20(14) 3

* indicates the assigned cell

AC = (1,302

z = 22+100(penalty-cost)
7 =3

40 Jachun Joo

RER S

Phase II: Adjusting Feasibility and Making Reassignment

S; = @ foral i

j =3,
D = (6 11, 7)
¢ =(12,3,0), Nl = NI = 1,

WD = (18,14, 7)
i = argmin WD = 3
Check DC; for the incoming candidate cell (3, 3).

.DC3 = {2}
;° = arg max jepc,@;; = 2

Incomming cell (7,7): (3, 3)
Outgoing cell (7,7%: (3, 2)
Reassign tasks as shown in table 5.

z = 30+100
J =
b =1(4,18)

Table 5: Solution Table after the Reassignments of Jobs

c(a)

7(15) * 9(15) 24(10) 27(5)
46(12) 17(8) 15(12) 11(12) *
30(8) 4(15) 12(10) * 20(14)
Sy = {1}

J =

A3 = 30-7+9-100(penalty-cost) = 32-100

Incomming cell (7*, /*) = argmin ; jes Dy = (3. 1)
Outgoing cell (2,7) = (1,1)

Incomming cell (.7) = (1, 2)

z =62

b = (4,10
J =0

B4k F1 A New Heuristic for the Generalized Assignment Problem 41

Table 6: Final Solution

c(a) b’
7(15) 9(15) * 24(10) 27(5) 4
46(12) 17(8) 15(12) 11(12) * 1
30(8) * 4(15) 12(10) * 20(14) 0

AC =132

The heuristic terminates the procedures with the optimum solution as shown in table 6.

Phase I: Solution Improvements

To describe the phase III of the heuristic, we assumed that an initial solution is given as table 7.

b = (41,3

J =92

AC=1(2311D

z = 101

Table 7: Initial Feasible Solution

c(a) v’
7(15) 9(15) 24(10) * 27105 * 4
46(12) * 17(8) 15(12) 11(12) 1
30(8) 4(15) * 12(10) 20(14) 3

Phase MM-1: Single Swap

S; = @ forali

Phase II-2: Multiple Swaps

Table 8 shows a feasible loop and the additional movememt of task 3 for j; = 1.
Feasible loop: (2,1)-(3, 1)-(3, 2)-(2, 2)

4?2 Jaehun Joo BEFLg

Incomming and outgoing options through the additional movement: (3, 3), (1, 3)

61 = -3
82 = -12
éd =-15

Incomming cells: (3, 1), (2, 2), (3, 3)
QOutgoing cells: (2, 1), (3, 2), (1, 3)

AC = (3,231
b = (14, 5 0)
2z = 86

Table 8: Best Feasible Loop Including Additional Move for j; = 1

c(a))
7(15) 9(15) 24(10)© * 27(5) * 4
46(12)© * 17()& 15(12)” 11(12) 1
30(8)4 4(15)0 * 12(10)&® 20(14) 3
&% and © indicate the incomming cell and the outgoing cell, respectively.
Table 9 shows the updated solution and a feasible loop for j; = 2.

Feasible loop: (2, 2)-(1, 2)-(1, 4)-(2, 4)

Incomming and outgoing options through the additional movement: null

6 = -24

g =0

6 = -24

Incomming cells: (1, 2), (2, 4)

Outgoing cells: (2, 2), (1, 4)

AC =132

b=1(410

z =62

Table 9: Best Feasible Loop for j; = 2

c(a) b

7(15) 9158 24(10) 21(5 * 14
46(12) 17() _* 15(12) 11(12) 5
30(8 * 4(15) 12(10) * 20(14) 0

B4 HI A New Heuristic for the Generalized Assignment Problem 43

Table 10: Final Solution

cla) |5}
7(15) 9(15) * 24(10) 27(5) 4
46(12) 17(8) 15(12) 11(12) * 1
30(8 * 4(15) 12(10) * 20(14) 0

No further feasible loop exists. The final solution of the example problem is shown in table 8 and it

is global optimum.

4. Computational Experiments

4.1 Computational Experiments

The algorithm was programmed in FORTRAN and executed on a microcomputer, The heuristic

requires the following computer memory:

Storage requirements for input informations(@;;, ¢y, and b;): 2mn+m
Storage requirements for a_ﬁ and b;: mn+m
Storage requirements for linked lists of J and AC it 2n

Storage requirements for S; and Dj : 2mn

Storage requirements for building the loop and improving the solutions: 5n+4m

Thus, the heuristic requires a total of 5mn+7n+6m. On the other hand, Martello and Toth's HGAP,

and Amini and Racer’'s VDSH requires 3mn+7n+6m and 4 n2+6mn+5r1+3m, respectively.
We tested it on a sample set of random problems generated from uniform distributions, This sample
set consists of four classes which are referred to A, B, C, and D types.

Four different problems were generated from the following distributions:

A a; and ¢ are integer from a uniform distribution between 5 and 25 and 1 and 40, respectively.
bi = 9(n/m) + 0.4 maxi€l Zj€Ji* a;, where
J* = {i€J:i=arg{min; c)}.

B: Same as A for aj and ¢ by = 0.7 of by in A,

44 Jachun Joo BEEE

C: Same as A for aj by = 0.8 Jj€J aym.
D: Same as C for b. aj is integer from a uniform distribution between 1 and 100,

cj = 111 - a;j + K. K is integer from a uniform distribution between -10 and 10,

The above four different types of problems are benchmarks which were used to test the algorithms
developed by many researchers(5, 9, 20]. However, on the problem classes, A, B, and C, Fisher, et al,

and Ross and Soland tested the problems with integer generated from a uniform distribution between 1
and 25 for ¢; while Amini and Racer generated values of ¢; between 1 and 40.

In this paper, to compare our heuristic method with the previous heuristic menthods, we categorized
problems of each class as “small"(n = 10, 20, m = 3, 5) or “large”(n = 50, 100, 200, m = 5, 10,
20) according to Amini and Racer's classification. Since the GAP is NP-hard, the performance of
optimization methods degrades severely with increased problem size. As a result, we compared the
efficiency of our heuristic algorithm with that of optimization algorithm which was developed by Joo[1]
for small test problems. The optimization algorithm represents the GAP as network for solving it. Then
it scans the optimal path by using the fathoming rule which exploits the lower bound and
backtracking.

However, to more adequately reflect real-world conditions, the large problems are included in
measuring performance of the heuristic algorithm in terms of Central Processing Unit(CPU) running
time and the relative errors from lower bounds. Two kinds of lower bounds are calculated. The first is
computed by linear programming(LP) relaxation of the GAP. Hereafter, the lower bound is called LP,
Since we could not obtain the optimal solutions on the large-size problems, we calculated the lower
bound using LP relaxation in order to obtain the relative error. The lower bounds were calculated by
the generalized network solver that was developed by Joo and Kim[2]. The other is computed by
removing the capacity constraints(3). The lower bound is called LLB. It equals to the value that is
calculated by allocating each task to any workstation subject to unlimited capacity. Hence errors of the
heuristic are conservatively estimated in order to compare it with the previous heuristic methods,

Tables 11 and 12 show experimental results for “small” and “large” problems respectively. Each
entry of tables 11 and 12 was obtained by randomly generating and solving ten different problems for
each class type. Therefore, the algorithm was tested on a sample set of 520 random problems. The
CPU time and relative errors are the average of results for ten problems. To obtain the ralative errors
of the heuristic and ensure the consistency of experiment, we used the same random number seeds for

all types of problems and all sizes of problems as follows:

=4k Bl A New Heuristic for the Generalized Assignment Problem 45

No. of problem Seed

12356.0
23456.0
65321.0
67890.0
99459.0
109880.0
109980.0
110990.0
145027.0
209135.0

W 00 =13 O U1 &= W N

—
<o

All random numbers were generated by the subroutine of Microsoft Fortran optimizing compiler

version 4.0.
Table 11: Average Solution CPU Time and Relative Error for "Small” Problems
Probl
Problem . em C.PU Errqr frorlr)l Error from Error CPU Time by
ol __Size Time Optimum LP? (max) From Otimization
ass n m (max) (max) LLBY P

A 10 3 0.01(0.05) 0.000(0.000) 0.040(0.173) 0.080 0.02
10 5 0.01(0.05) 0.000(0.000) 0.090(0.436) 0.168 0.04
20 3 0.02(0.05) 0.001(0.020) 0.021(0.058) 0.034 0.04
205 0.05(0.08) 0.000(0.000) 0.013(0.025) 0.049 0.02

B 10 3 0.01(0.05) 0.018(0.036) 0.170(0.417) 0.521 0.00
105 0.01(0.06) 0.032(0.064) 0.280(0.706) 0.747 0.06
20 3 0.01(0.06) 0.026(0.042) 0.116(0.241) 0.482 1.49
20 5 0.03(0.06) 0.031(0.052) 0.144(0.323) 0.422 0.06

C 103 0.00¢0.01) 0.007(0.034) 0.244(0.492) 0.539 0.00
105 0.01(0.06) 0.031(0.052) 0.373(0.685) 1211 0.06
20 3 0.01(0.05) 0.028(0.051) 0.113(0.182) 0.349 0.06
205 0.02(0.05) 0.029(0.053) 0.150(0.260) 0.588 7140

D 10 3 0.02(0.05) 0.029(0.041) 0.084(0.140) 1.110 0.06
105 0.02(0.05) 0.031(0.053) 0.123(0.192) 2023 0.28
20 3 0.00(0.04) 0.027(0.042) 0.041(0.062) 0.951 116.29
20 5 0.04(0.06) NA 0.059(0.068) 1.588 NA

1) (z -2")/ 2", where z is objective value obtained by the heuristic. 2° is optimal value of
the objective function obtained by optimization algorithm

2) (z - 2;p)/ 21p, where 2;p 27p is lower bound of LP relaxation

3) (z -275)/ 215, where is lower bound calculated by removing capacity constraints

46 Jachun Joo rEfg

As shown in fourth column of table 11, the maximum average CPU time required to solve the
problems is 0.05 second. Fifth column shows that the maximum average error from optimum is 3.2%
on problem class B. For all small problem classes, the average errors from optimum and LP lower
bound are 1.9 and 12.8 percent respectively. The heuristic algorithm exhibits very little sensitivity with
respect to the problem size in terms of the relative errors on all problem classes.

The heuristic found the optimal solution on the problem class A. The problem class D is by far
known to the most difficult problem type. On these small problems, the heuristic exhibits the relative
error and CPU running time similar to those of problem classes B and C

Table 12 shows computational results of “large” problems. Third column of table 12 shows average
CPU times. The maximum average CPU time of large problems is 357 seconds on 486 DX processor.
An average error from LP lower bound on large problems is 0.059 which is 0.069 less than that of
small problems. Figure 1 shows the relative errors from LP lower bound by problem class. As the
number of jobs increases, the error decreases on each problem class. On the class A of small problems,
the average relative error from LP is 41% and the heuristic finds optimal solutions. On the class A of
large problems, the average relative error based on the LP lower bound is 0.5%. From this point of
view, we may estimate that the heuristic finds the optimal solutions on the problem class A.

Since the computer codes of VDSH and HGAP are not available, the heuristic can’t be directly
compared with them, Thus we compared the performance of our algorithm with those of VDSH and
HGAP through an indirect method. Even though test problems were produced by different random
number generators using different seeds, empirical evidence indicates that the average relative error
may reflect the performance of algorithm since each entry of table 12 is the average of results for ten
problems and all parameters of each problem are generated from same range of distribution.

Fifth column of table 12 shows the relative errors from least lower bound for each algorithm. On
thirty six cases, the average error rate of the heuristic(SGAP) is 19.1% less than that of HGAP, In
particular, on the class problem D which is known to hard to solve, the heusristic achieved an average
of 28.0% reduction in the relative error rate over HGAP. The VDSH could not find feasible solutions
on 200 X 5 problem of class B, 100 X 5 and 200 X 5 problems of class C, and 50 X 20 problem of
Class D. On thirty two cases excluding test problems not found feasible by the VDSH, the heuristic
achieved an average of 2.8% reduction in the ralative error rate over VDSH. On the problem class D
which consists of eight cases excluding one test problem not found feasible by the VDSH, the
difference of errors between the heuristic and the VDSH is equal to 0.076.

214 BIGR A New Heuristic for the Generalized Assignment Problem 47

Table 12: Average Solution CPU Time and Relative Error for “Large” Problems

; CPU Time Error Error

Problem Problem Sie (max) from LLB From LP
Class n m (VDSH, HGAP)V| (max)

A 50 5 0.62(082) | 0.027(0.014, 0021) | 0.007(0.015)

10 1.20(158) | 0.020(0.026, 0027) | 0.008(0.018)

20 209(357) | 0.030(0.043, 0.045) | 0.015(0.034)

100 5 5.12(636) | 0.003(0.004, 0.004) | 0.0010,004)

10 13.18(17.03) | 0.010(0.007, 0.007) | 0.005(0.007)

20 30.44(41.40) | 0.013(0.006, 0.006) | 0.004(0.012)

200 5 4671(57.78) | 0.002(0002, 0.003) | 0.001(0.001)

10 114.90(146.86) | 0.004(0002, 0,003) | 0.001(0.003)

20 258,08(278.30) | 0.008(0.002, 0.002) | 0.002(0.004)

B 50 5 048(077) | 0.251(0.334, 0.463) | 0.064(0.115)

10 1.00(1.43) | 0.246(0.258, 0399) | 0.112(0.170)

20 1.78(247) | 0.223(0.275, 0354) | 0.141(0231)

100 5 258(4.07) | 0.207(0201, 0329) | 0.059(0.104)

10 779(12.60) | 0.197(0.205, 0434) | 0.074(0.123)

20 22.87(33.07) | 0103(0.111, 0205) | 0.052(0.103)

200 5 20.08(37.45) | 0.244(NA?, 0388) | 0.010(0.036)

10 74.08(87.67) | 0.196(0.216, 0498) | 0.049(0.079)

20 204.47(241.78) | 0.179(0.100, 0273) | 0.081(0.135)

C 50 5 0.42(0.55) | 0.349(0.349, 0.483) | 0,068(0.093)

10 0.71(1.26) | 0.433(0.448, 0708) | 0.164(0.238)

20 118(1.32) | 0790(0924, 1341) | 0.391(0.480)

100 5 347(500) | 0235(NA, 0312) | 0.056(0.100)

10 921(13.02) | 0282(0362. 0.647) | 0.092(0.116)

20 15.42(23.18) | 0.387(0.506, 1.038) | 0.168(0.283)

200 5 24.16(3043) | 0.199(NA, 0347) | 0.031(0.083)

10 69.45(87.67) | 0.216(0204, 0546) | 0.052(0.079)

20 148.19(183.77) | 0.335(0.280, 0.705) | 0.098(0.150)

D 50 5 0.71(088) | 1487(1511, 1568) | 0.034(0.052)

10 150(1.98) | 2512(2598, 3.747) | 0.048(0.064)

20 381(460) | 3675(NA, 3.758) | 0.064(0.072)

100 5 5.29(6.15) | 1.493(1518, 1591) | 0.025(0.029)

10 16.35(19.66) | 2.409(2.661, 2.813) | 0.035(0.040)

20 31.92(52.26) | 3.740(3834, 3834) | 0.050(0.062)

200 5 4794(72.28) | 1411(1.406, 1539) | 0.019(0.031)

10 145.36(206.07) | 2.470(2517, 2601) | 0.025(0.030)

2 357.56(417.27) | 3810(3815, 4.040) | 0.032(0.036)

1) The performance of the heuristic, VDSH developed by Amini and Racer(1994). The computational
results of the HGAP which is developed by Martello and Toth are obtained from Amini and Racer.
2) VDSH couldn't find the feasible solutions in more than 5 out of 10 test problems

48 Jaehun Joo RERL

0.25
errors

0.2 |
0.15 -

0.1 1
0.5 k\‘\

I——Y
0 '_\F = | |
50 100 200

n

l+ Type A —— Type B —%— Type C —&— Type D

Figure 1 Relative Errors from LP lower bound

4.2 Statistical Analysis of Experimental Resuits

The efficiency of a heuristic may be measured by three criteria which are solution quality, CPU
running time, and computer memory requirement. The advancement of computer technology makes the
CPU time and the memory requirement less important.

On all test problems, we conducted the experiment on the microcomputer under MS-DOS while
Amini and Racer did it on the VAX 6420 computer under the VAX/VMS operating systems. Thus,
we can't compare the CPU running time under the situation where the computer codes of the previous
heuristic methods are not available, As described in section 4.1, the heuristic(SGAP) and Martello and
Toth’s heuristic(HGAP) require O(mn) storage while Amini and Racer’s heuristic(VDSH) requires O
(7).

In this section, we focused on the comparison of the solution qualities obtained by alternative

heuristic methods. If the relative error from the least lower bound(LLB) increases, the solution quality

®;l1as EIHE A New Heuristic for the Generalized Assignment Problem 49

of a heuristic deteriorates.

The statistical analysis is designed to test null hypothesis as follows:

H1l: On all problems, there is no significant difference between the heuristic(SGAP) and the previous
heuristic methods(VDSH and HGAP).
H2: On each class problem, there is no significant difference between the heuristic and the previous

heuristic methods.

To test hyothesises, T-test of SPSS/PC+ software is conducted. Table 13 shows means of relative
errors for each class problem, which were obtained by alternative heuristic methods.

The null hypothesis(H1) associated with SGAP and HGAP is rejected at the 005 level of
significance, However, the null hypothesis(H1) associated with SGAP and VDSH is not rejected. Thus,
we conclude that the heuristic(SGAP), with an average error of 0.785, significantly outperforms the
HGAP, with an average error of 0.976.

On each problem class except class A, the null hypothesis(H2) associated with SGAP and HGAP is
rejected at the 0.05 level of significance. On the problem classes C and D, the null hypothesis(H2)
associated with SGAP and VDSH is rejected at the 0.10 level of significance.

The statistical analysis indicates that the solution quality provided by our heuristic method is superior
to that of HGAP. The heuristic(SGAP) is comparable to Amini and Racer's VDSH. In particular, on
the problem classes C and D, the heuristic with the average errors of 0.398 and 2416, outperforms the
VDSH with the average errors of 0.451 and 2.482 with a 10% risk.

Table 13: Mean and P-value for relative errors

SGAP HGAP P-Value SGAP VDSH# P-Value
Class A 0013 0.013 0.964 0013 0011 0.642
Class B 0215 0371 0.000** 0211 0212 0.964
Class C 0358 0679 0.001** 0398 0451 0.087*
Calss D 2556 2842 0.050** 2416 2482 0.060*
Overall 0.785 0976 0.000** 0747 0.775 0.021

Excludes test problems not found feasible by VDSH
** At the 0.05 level of significance, means of error between SGAP and HGAP are different,
* At the 0.10 level of significance, means of error between SGAP and HGAP are different.

50 Jaehun Joo BERE

5. Conclusion

The GAP is known to NP hard. According to Guignard and Rosenwein{20], 80 X 5 and 100 X 5
problems could not be solved with the existing core storage allocations on a DEC-10, although 40 X 10
and 50 X 10 problems were effectively solved. Their optimization algorithm is known to be most
efficient,

We presented a new heuristic search algorithm for GAPs. A feasible solution is obtained by adjusting
the available capacity of a workstation for the case of which there is at least one unassigned job
existing after completion of the initial assignments which are conducted by using the criterion based on
minimum cost per unit resource requirement. Finally, the heuristic performs the sophisticated procedures
reassigning one or more job(s) to new workstation(s) to improve the incumbent solution.

We tested it on 520 random problems. An average error rate from optimimum is 1.9% on small
problems of which the size is below 20 X 5. For large problems, we compared the heuristic with the
previous heuristic methods which were developed by Amini and Racer, and Matello and Toth through
the indirect method since their computer codes were not available, An average error from the lower
bound which is computed by removing capacity constraints is 0,747 which is 0.028 less than over that
of the VDSH that is known to most efficient heuristic method. The maximum average CPU running
time of the heuristic is 357 seconds on microcomputer(486 DX processor), while that of the VDSH is
131.9 seconds on VAX 6420, Our heuristic method found the feasible solutions on all test problems
while the VDSH couldn’t find the feasible solutions on the 42 problems among 520 test problems. In
particular, on the problem classes C and D, our heusristic method is superior to the VDSH at the 0.10
level of significance. But, we may not argue which algorithm is more efficient until both will be tested
on the same problems and the same computer.

The statistical analysis indicates that our heuritic method is superior to the HGAP in terms of the
solution quality. However, the limitation of the study lies in the fact that the heuristic couldnt be
directly compared with the previous heuristic methods. (The computer code of SGAP is available

from the author.)

REFERENCES,

(1] Joo, J. H, “A New Algorithm Based on the Enumeration for the Generalized Assignment
Problem,” Dongnam Journal of Management, Vol. 10(1994), pp. 243-255,

[2] Joo, J. H. and K. Kim, “Improvements of Branch and Bound Algorithm for the Integer
Generalized Network Problem,” Journal of the Korean Operations Research and Management
Science Society, Vol. 19, No. 2, 1994, pp. 1-19.

B1ag Fl1% A New Heuristic for the Generalized Assignment Problem 51

(3] Aminii M. M., “Network Reoptimization Algorithm: A Computational Comparison of Algorithmic
Alternatives,” University of Microfilms, International, Ann Arbor, MI(dissertation, Department of
Operations Research, Southern Methodist University, Dallas, TX), Dec., 1989.

[4] ———, and R. S. Bamr, “Network Reoptimization Algorithms: A Statistical Designed
Comparison,” ORSA J. on Computing, Vol. 5, No. 4, 1993, pp. 395-405,

[5] Amini, M. M. and M. Racer, “A Rigorous Computational Comparison of Alternative Solution
Methods for the Generalized Assignment Problem,” Management Science, Vol. 40, No. 7, July
1944, pp. 868-890.

[6] Balachandran, V. “An Integer Generalized Transportation Model for Optimal Job Assignment in
Computer Networks, Working Paper 34-72-3, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, Nov., 1972,

[7] Casco, D. O. B. L. Golden, and E.A. Wasil, “Vehicle Routing with Backhauls: Models,
Algorithms, and Case Studies,” Vehicle Routing: Methods and Studies, Elsevier Science Pub,
1988.

[8] Fisher, M. L. and R. Jaikumar, “A Generalized Assignment Heuristic for Vehicle Routing,”
Networks, Vol. 11, 1981, pp. 109-124.

[9] Fisher, M. L., R. Jaikkumar, and L. N. Van Wassenhove, “A Multiplier Adjustment Method for
the Generalized Assignment Problem,” Management Science, Vol. 32, No. 9(1986), pp. 1095-1103,

[10] Forrest, J. J, J. P. H. Hirst and J. A. Tomlin, “Practical Solution of Large Mixed Integer
Programming Problems with UMPIRE," Management Science, Vol. 20, No. 5(1974), pp. 736-773

[11] Fox, B. L, “Data Structures and Computer Science Techniques in Operations Research,”
Operations Research, Vol. 26, No, 5(1978), pp. 686-717.

[12] Gavish, B. and H. Pirkul, “Algorithms for the Multi-Resource Generalized Assignement Problem,”
Management Science, Vol. 37, No. 6, 1991, pp. 695-713.

[13] Glover, F. “Tabu Search: A Tutorial,” Interfaces, Vol. 20, No. 4, July-August, 1990, pp. 74-94.

(14] . “Tabu Search - Part I” ORSA J. on Computing, Vol. 1, No. 3, 1989, pp. 190-206,

[15] , “Tabu search - Part II” , Vol. 2, No. 1. 1990, pp. 4-34.

[16] Glover, F., J. Hultz, D. Klingman and J. Stutz, “Generalized Networks: A Fundamental
Computer-Based Planning Tool.” Management Science, Vol. 24, No, 12(1978), pp. 1209-1220.

[17] Golden, B. L. and W. R. Stewart, “Empirical Analysis of Heuristics,” in EL. Lawer et al.(Eds.),
The Traveling Salesman Problem, John Wiley and Sons, New York, 1985,

[18] Greenberg, H. J.. “Computational Testing: Why, How, and How Much,” ORSA J on Computing,
Vol. 2, 1990, pp. 94-97.

[19] Grigoriadis, M. D, D. T. Tang and L. S. Woo, “Considerations in the Optimal Synthesis of Some
Communication Networks,” Presented at the Joint National Meeting of ORSA/TIMS, Boston,

52 Jaehun Joo sEle

MA, April, 1974,

[20] Guignard, M. M. B. Rosenwein, “An Improved Dual Based Algorithm for the Generalized
Assignment Problem,” Operations Research, Vol, 37, No. 4(1989), pp. 658-663.

[21] Hall, R. W., “Route Choice on Networks with Concave Costs and Exclusive Arcs,” Transportation
Research, 23b, 1989, pp. 103-121.

[22] Martello, S. and P. Toth, “An Algorithm for the Generalized Assignemnt Problem,” in J. P.
Brans(Ed.), Operational Research 81, North-Holland, Amsterdam, 1981, pp. 589-603.

[23] and , “Linear Assignment Problem,” Annals of Discrete Mathmatics, Vol, 31,
1987, pp. 259-282. '

(24] Papadimitriou, C. H. and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, NJ, 1982,

[25] Ross, G. T. and R. M. Soland, “A Branch and Bound Algorithm for the Generalized Assignment
Problem,” Math. Programming, Vol 8, 1977, pp. 92-103.

[26] Skorin-Kapov, J., “Tabu Search Applied to the Quadratic Assignment Problem,” ORSA J on
Computing, Vol. 2, No. 1, 1990, pp. 33-44.

