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ON THE RANDOM n x m ASSIGNMENT PROBLEM

SUNGCHUL LEE* AND ZHONGGEN SUY

ABsTRACT. Consider the random n x m assignment problem with
m > ... Let u;; and ¢;; be iid uniform random variables on [0, 1]
and exponential random variables with mean 1, respectively, and let
Un.m and Ty, . denote the optimal assignment costs corresponding
to u;,; and t; ;. In this paper we first give a comparison result about
the discrepancy ETy ;n — EU, 1, . Using this comparison result with
a known lower bound for Var(7T,,») we obtains a lower bound for
Var(Un.m ). Finally, we study the way that EU, ., and ET, ,» vary
as m does. It turns out that only when m — n is large enough, the
cost decreases significantly.

1. Introduction and main results

Suppose there are n jobs, m machines with m > n, and an n x m
non-negative matrix (a; ;) representing the cost of job ¢ done using ma-
chine j. An assignment 7 is an one to one map from I = {1,2,...,n} to
J =1{1,2,...,m}, indicating that job 7 is assigned to machine 7 (7). The
n X m assignment problem is to find ming ) i) a; »(;). In this paper
we are mainly interested in the stochastic version of the problem, where
the costs a; ; are independent identically distributed (iid) random vari-
ables drawn from a given distribution. The uniform distribution on the
unit interval [0, 1] is the most studied distribution in the literature. How-
ever, because of the memoryless property of the exponential distribution
one can simplify many calculations under the exponential distribution.
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Therefore, the exponential distribution is a good alternative to study.
See Aldous [1], [2], Alm and Sorkin [3], Coppersmith and Sorkin [4] for
various issues and intriguing results.

Let u;; and ¢;; be iid uniform random variables on [0,1] and iid
exponential random variables with mean 1, and let Uy, ,, and T, ,,, denote
the corresponding optimal assignment costs respectively, i.e.,

n n
Unm = m}n § Ui, m(i)s Tom = I'Ilﬂin § tim(i)-
i=1 1=1

If m = n, we simply write U, and T,, for U,, ,,, and T}, j.

A number of authors have investigated the limit behaviours and the
exact distributions of Uy, ,, and T, ,,,: For the case m = n, Aldous [1]
first established the existence of the limit of ET;, and only recently he [2]
identifies the limit as ((2) = 72/6. A tail bound for U, is also available
by Talagrand [7]. See also Frieze and Sorkin [5] and Coppersmith and
Sorkin [4] for interesting results. For the case m = [(14+a)n], Talagrand
[8] introduces the statistical physics approach to the random n x m
assignment model and obtains a good description of U, ,, at least at
high temperature. In this regards Alm and Sorkin [3] made an intriguing
conjecture about ET, ,,, generalizing Parisi’s earlier conjecture about
ET,. Note that this conjecture is only for the exponential distribution
and does not hold in the uniform case.

In many studies one obtains some properties under either the uniform
or the exponential case. Since only the density at 0 ultimately matters,
the properties are automatically valid for the other case. One of our
purpose of this paper is to make the discrepancy between EU, ,, and
ET,  explicit. Here is the result.

THEOREM 1. Let m = m(n) be a function of n with m > n. If
m = O(n), then there are two strictly positive but finite constants C;
and Cy such that

logn

Oy < BTy — EUppn < Co 82
n n
As a direct application of the above comparison theorem, we ob-
tain the lower bound for Var(U, ,,) from the known lower bound for
Var(T,,m). Note that the below lower bound for Var(U, ) is much
stronger than the lower bound that we [6] obtained using the direct con-
ditioning argument.
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THEOREM 2. Let m = m(n) be a function of n with m > n. If
m = O(n), then there is a strictly positive but finite constant C3 such
that

1
5 Var(Up,m) > Cg;.

Var(Tpm) = —5
m

In this paper we also investigate how EU,,, and ET, ,, change as
m does. Intuitively, increasing m is equivalent to offering more pos-
sibilities of assigning each job to machines of smaller cost and so the
total cost will decrease. However, our study shows that only when the
amount m—n of spare machines is large enough, the assignment cost will
be saved significantly. Our main result in this direction is the following.

THEOREM 3. Let m = m(n) be a function of n with m > n.

(i) If m/n — oo, then EU, ;n — 0.

(ii) If (m — n)logn/n — 0, then EUp m — ¢(2).

(iil) If m = [(1 + a)n] for some fixed 0 < o < 00, then limsup,,_,
EUpnm < ((2).
The same results hold for Ty, 1.

REMARK. Regarding (ii), it would be interesting if one could prove
EUpm — €(2) under the condition (m —n)/n — 0. Indeed, if U, has a
Gaussian tail, i.e., for any £ > 0

P({U, — EU,| > en™Y/2) < Cye= %",

then a simple calculation shows that EU, ,, — EU, — 0. Hence, by Al-
dous’ identification of the limit of £T,, and by Theorem 1 we would have
EU, m — ¢(2) under the condition (m —n)/n — 0. Regarding (iii), we
don’t know whether the limit exists under the condition m = [(1+ a)n].

The proofs are given in Section 2. In the proof of Theorem 1 and
2, we use the following well-known coupling that for the cumulative
distribution function F'(z) of the exponential distribution with mean 1,
{F(t;;)} has the same distribution as {u;;} and {F~'(u;;)} has the
same distribution as {¢; ;}. We will approximate both F(z) and F~}(z)
by Talyor’s expansion. In the proof of Theorem 3, we compare any given
assignment cost with the optimal assignment cost.

In this paper, there are lots of strictly positive but finite constants
whose specific values are not of interest. We denote them by C;.
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2. Proofs

We start with a lemma of Frieze and Sorkin [5] which tells that the
maximum edge cost used in an optimal assignment is of order logn/n.

LEMMA 1. Denote by Umnax and Tiax the maximum edge cost used
in an optimal assignment for the uniform and the exponential cases,
respectively. If m = O(n), then

)S_ P(Tmaxchilogn)gi-

n8 n n8

1
P(Umax > 0610gn 5

Proor. This lemma was first obtained by Frieze and Sorkin [5] in
the case of the uniform cost and m = n. Since (1 — e *)/x — 1 as
z — 0, the same argument is valid for the exponential case. Also, their
proof can be easily extended to the case m = O(n). The details are
omitted. ]

ProOOF OF THEOREM 1. Let’s start with the upper bound. Note
that for the cumulative distribution function F(z) of the exponential
distribution with mean 1, {F~*(u; ;)} has the same distribution as {¢; ;},
where F~1(z) = —In(1 — ). Thus, we have

n n
ETym — EUppm = E(n#nz F (ug i) — n;rin; ui,,,(i))

i=1
Let Q, be
Q, = {Umax < Cs logn/n}7

where Cj is given in Lemma 1, and let o be an optimal assignment for
u;j. Since for 0 < £ < 043, —In(1l —z) —z < 2%2/2 + 23/2 < 22, we
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have then for large enough n with Cglogn/n < 0.43

n
( min Z F~ Us 7,) n%rin Z ui,ﬂ'(i)) 1(971)
i=1

< EZ( 10(1 ui,o’(i))l(ﬂn)
01 < BY w1
i=1
< Cs lognEUn’m
n
< C,7logn

where the last inequality follows from sup,, EUy , < sup,, EU, < oc.
On the other hand, we have by Lemma 1

E(Hﬂn 2": e T min Xn:um(i)) 1(0)
‘ i=1
(mmZF zﬂz))l(Qc)
E(ZF”l(ui,i))mg)
im1

nEF 1 (u1,1)1(02%)
n(E(F~ (u11)))Y2P(QE)/2
V2

n3’

IA

(2.2)

VAN

IN A

IA

Combining (2.1) and (2.2), we have the upper bound.
For the lower bound, note that {F(t; ;)} has the same distribution as
{ui;}. Thus, we have

n n
ETpm — EUpm = E(n%rinz tiny —miny F(ti,,,(i))).
i=1 =1
Let A,, be
A, = {Tmax < Cg logn/n},
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where Cg is given in Lemma 1, and let 7 be an optimal assignment for
t;,j. Since for any =, z — (1 — e~ %) > z%/2 — 23/6, we have then

E(ID#II Z ti,ﬂ'(i) — rr;in Z F(ti,ﬂ-(i))) > E Z <ti,r(i) - F(tz,‘r(Z)))
=1 i=1 i=1

n 2 @) t3 Q)
(2.3) > By (52 -52)
i=1
_ P2 R s
= B0~ 5P
It is easy to see that
2
2 g2
(2.4) Etl,’r(l) Z Elglsnm tlyj = ;n"é‘.
Also, with A,, by Lemma 1
Et} ) = Et],q)l(8n) + Et] y1(A5)
Celogn R
< (EELER G +EB Y 1,108
1<j<m
Cglogn c
(25) S (B )+ m(BE )V P(AG) 2
1
< (“ EVEE ) + Can~.
n ‘
Now, the lower bound follows from (2.3)-(2.5). O

REMARK. It seems that the uniform integrability of the sum of the
squared edge costs in an optimal assignment is equivalent to ET, ,,, —
EUpm = O(n™!). Indeed, with the notion in the above proof one can
easily see that if {nu; ,(1)} is Lo-bounded, then

(2.6) ETym — EUpm = 0O(n71h).

Also, if (2.6) holds, then {nt; (1)} is Lo-bounded. It is natural to ex-
pect that both {nt; .(1)} and {nu, ,(1)} are Ly-bounded but we have no
justification.

PRrROOF OF THEOREM 2. The lower bound of Var(T, ,,) in the case
m = n was first given by Theorem 28 of Alm and Sorkin (1998). The
memoryless property of the exponential distribution makes the calcula-
tion pretty elementary. Actually their proof with obvious modification
is also valid for m > n. So, we skip the proof of Var(T, m) > n/m?.
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For the lower bound of Var(Up ), we use the comparition theorem,

Theorem 1 as follows. Let T, = ming > i, F‘l(ui,,,(i)). A similar
calculation to (2.1) and (2.2) gives

(logn)®

(2.7) E(Ty = Unm)? < Cy —

Indeed, with €, = {Unax < Cslogn/n} and o an optimal assignment
for u; ; for large enough n with Cglogn/n < 0.43 as we did in the proof
of Theorem 1

E(ernzn: F~H (ugn) — H;rlni: uz’,ﬂ'(i)>21(9n)
i1 i=1
(2.8) < E(iu?,a(i))2l(ﬂ )
< (Cm (log n)” )E(Zuw(z))l(ﬂ

< Oy (logn)?

n2
and
n n 2
E(ngnz FM ) —min > sy ) 1(05)
; =1
< (ZF‘l u”) (Q7)
n
(29) < E(D (P (i) + Y F 7 (i) F ™ (uy) ) 1)
i=1 i#7
< Cian3 + C13n?EF~ ug 1)~ (ug,2)1(02)
< Cn™3+ Cl3n2(E(Fﬁl(Ul,l)F—l(“2,2))2)1/213(92)1/2
S 0147’1_2.

Therefore, (2.7) follows from (2.8) and (2.9).
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Now, the Theorem follows form Theorem 1 and (2.7):

r(U | )) 1/2

5
3
3

E(Unin — EUn) )

E(T* + (Ungn — To ) — ETTT,m — (EUpm — ET;,m))Q)l/Z
E(T,I,m - ET;’m>2)1/2 - <E(Un,m B T;;m)2) 1/2

—}EUn,m ~ ET;;ml

> (E (T;;m - ET;{,m))2)1/2 . 2(E (Un,m . T;:’m)z) &

nl/2 o (log n)3/2

- = 5

v

= Cmn_l/z.

O
PROOF OF THEOREM 3. (i). Although the case m/n — oo is un-
realistic, its simple analysis is to some extent instructive. Consider the
cost Hy m of the heuristic assignment 7 given by successively examining
each job i, 1 < ¢ < n, and making assignment to the free machine with
minimal cost, i.e., u; ;) = min{u;; : j # w(k) forall 1 <k <i—1}
Since u; ; is independent and uniformly distributed on [0, 1], the i-th as-
signment costs the minimum of m — ¢ 4+ 1 independent uniform random
variables and hence the expected cost of the i-th assignment is exactly
1/(m — i+ 2). Thus, we have
u 1

EUn,m < EHn,m = Z

— = 0.
1m—i+2_%

By Theorem 1, we also have ET,, ;, — 0.
(ii). First, note that by definition EU, ,, < EU,. Then, by Aldous
[2] we have
limsup EUp m < lim EU, = ((2).
n—o0 n—00
So, it suffices to show that liminf, ,. EUp m > ((2).
Let u;] = min{u; ;, Cs logn/n} with Cs as in Lemma 1. Using uij
we define Uy, ,,, and U}, as we did Up m and U, with u; ;. Let Q be any
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subset of J with |Q| = n, and for each such Q we define U/, (Q) as
n
U,(Q) = H;inzué,w(i) ;
i=1

where the minimum is taken over all one to one maps from I onto Q.
Then, one can easily see that Uy, ,, = ming U, (Q) and that

EUp. > EU.

= n,m

(2.10) = Eminl,(Q)

> EU, - B max Un(Q) — Up.

Since by Lemma 1, EU, — EU), < nP(Upax > Cglogn/n) — 0, by
Theorem 1 with Aldous’ identification of the limit ET,, we have EU}, —
¢(2). Hence, by (2.10) it is enough to show that F maxg |U}(Q)—-U,,| —
0.

Given any @, set ' = @ N {1,2,...,n} C J. Consider the random
assignment problem from I" to I, and we let X, be the corresponding
optimal cost with edge costs ug,j. Since @ and I have at most m — n
distinct elements, we have

X}, SUL@) < X} + Cylm —n) 22

X, <U, < X, + Cg(m—n)——.

Therefore, maxg |U;,(Q) — U),| < Ce(m —n)logn/n — 0 and hence we
have EUp, ,, — ¢(2). By Theorem 1, we also have ET, ,, — ((2).

(iii). Since EUp; < ET, p, it suffices to give the proof for Tp, .
Since the other cases are similar, we also focus on the case « = 1. Let 7
be an optimal assignment for 7, as before. For 0 < A < 1, define

N\ = |{1 <i<nit > AEti,T(i)H.

By Theorem 2 of Aldous [2], nt1 ;1) converges in distribution to a ran-
dom variable Z with EZ = ((2). So,

EN(X\)

= P(t100) > ABtrp)) = P(2 > X¢(2).
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Without loss of generality, suppose that t; .;) > AEt; ;) for @ =
1,2,...,N(A). Let ng = [N(A)/2] and we define

14, = min t1 4
1 je{n+1,...2n} 7

t2 ] min to s
7 je{ntl2n\Ga}

tnO sWJng no,J *

min ¢
je{n+1,...2n\{j1,-...dng-1}
Counstruct now an assignment 7’ on the basis of 7; for 1 < i < ng, let
(i) = { Ji if t;.j, < 3Bt (5
T(Z) if ti,ji > %Etz,r(z)

and for ng +1 < i <n, let 7'(i) = 7(i). Obviously, Ty 20, < 370t 1()-
Thus, we have

v

E(Tn - Tn,2n)

n n
EY tise =~ EY tir
=1 i=1
no A\
= EY (tira — tig) (g < 5 Btiri)
i=1

NN A
> EZ(EEti,T(i))l(ti,ji < EEti,‘r(i))‘

1=1

Since ng and 1(¢; ;, < %E't,',r(i)) are independent and since ng < n/2,

no
A A
E(Tn - Tn,2n) > E E (‘é‘Eti,T(i))l(ti,ji < EEti,T(i))
=1

v

(%Etl,r(l)) (Eno) (1 - exP(—nAEh,T(l)/‘l))

A E’I’Lo
= (EnEtl,T(l)) (—n—) (1 — exp(—n)\Etl,T(l)/4)> .
Since Eno/n — P(Z > X((2))/2 and since nEt; .1y — ¢(2), with

(2.11)

c= 2{(2)P(Z > AC(2))(1 — e/

we have by (2.11)
limsup ET, 2n < (1 — ¢)¢(2).

n-—=0o
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