• Title/Summary/Keyword: asphalt pavements

Search Result 242, Processing Time 0.027 seconds

Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network (합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출)

  • Choi, Yoon-Soo;Kim, Jong-Ho;Cho, Hyun-Chul;Lee, Chang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.38-44
    • /
    • 2019
  • A Convolution Neural Network(CNN) model was utilized to detect surface cracks in asphalt concrete pavements. The CNN used for this study consists of five layers with 3×3 convolution filter and 2×2 pooling kernel. Pavement surface crack images collected by automated road surveying equipment was used for the training and testing of the CNN. The performance of the CNN was evaluated using the accuracy, precision, recall, missing rate, and over rate of the surface crack detection. The CNN trained with the largest amount of data shows more than 96.6% of the accuracy, precision, and recall as well as less than 3.4% of the missing rate and the over rate.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF

An Evaluation of Skid Resistance Properties of Asphalt Concrete Pavement (아스팔트콘크리트 포장의 노면 미끄럼 저항성 평가)

  • Kim, Nakseok;Jeong, Haesoo
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • The skid resistant of pavement surface is an important parameter since it is directly related to the traffic safety under moving vehicular loads. In particular, it should be considered as a major factor in pavement performance evaluations to reduce the traffic accident from vehicular sliding. In this study, a portable and an automatic skid resistance tests were used to evaluate the skid resistances of the in-situ pavements. The test results showed that the skid resistance of the conventional dense graded pavement was more noticeable than the other pavement types such as the drainage pavement and the stone mastic asphalt(SMA) pavement as the service life of pavement was increased.

Evaluation of the Effect of Aggregate Structure on Rutting Performance of Asphalt Pavement (아스팔트 포장의 소성변형에 대한 골재 구조의 영향 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-147
    • /
    • 2007
  • Segregation in asphalt pavements occurs as a result of the non-uniform distribution of coarse and fine aggregates and causes premature distresses, such as cracking, raveling, and stripping. The effect of segregation on rutting, however, has not been clearly identified. Experimental and analytical work performed in this study indicates that rutting performance is affected by segregation of mixtures. However, the aggregate structure of mixtures appears to be a more critical factor that determines the rutting performance, rather than the level of segregation. Based on the field mixtures evaluated, an increase of coarse aggregate volume in an asphalt mixture is an important factor that results in good rutting performance. This effect holds true for mixtures with lower levels of air voids, but for mixtures with higher levels of air voids, the air voids effect becomes dominant, resulting in a reduction in rutting performance. An air void content of 10% appears to be a threshold that determines the rutting performance of Superpave mixtures. Once the air void content exceeds 10%, the rutting performance of Superpave mixtures decreases significantly, despite the coarse aggregate volume.

  • PDF

Stripping of Asphalt Pavements and Antistripping Addities (도로포장 구조물에서의 스트리핑 현상과 스트리핑 방지제의 이용방안)

  • 윤현희
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.2
    • /
    • pp.119-131
    • /
    • 1990
  • Physico-chemical properties of asphalt, aggregate, and asphalt-aggregate mixture that might influence stripping were summarized in Table 1, based on the fundamental theories concerning stripping. It was found that although physical properties of aggregate affected stripping, there was no strong correlation between the physical properties of aggregate, such as pore volume and surface area, and the stripping propensity of the aggregate. Chemical and electrochemical properties of aggregate surface in the presence of water were most important factors for stripping. All mineral aggregates tested in this study imparted distinctive pH values to the contacting water and possessed distinctive electrochemical properties as measured by zeta potential. It was found that aggregates which had relatively higher surface potential in water and/or which imparted relatively higher pH to the contacting water were more susceptible to stripping. The functionalities contained in antistripping additives tested were primary and secondary amines and those of organic nitrogen compounds. The functionalities were determined by examining their infrared spectra. Based on the interfacial energy concept, the contact angle of an asphalt drop on an aggregate surface immersed in water related to the stripping propensity. The contact angle and stripping propensity were markedly reduced by the presence of an antistripping additive. In general, all the additives tested improved stripping resistance to some extent, depending on their concentration in the asphalts. The optimum dosage of an additive varied with different asphalts, as well as different aggregates. All antistripping additives tested in this study lost their effectiveness and failed to function to some extent when maintained for hours in a hot asphalt.

  • PDF

A Study on Performance Criteria of Asphalt Pavements for Development of Performance-based Warranty Specification (성능보증 시방서 개발을 위한 아스팔트 포장 성능기준 연구)

  • Yeo, Hyun Dong;Nam, Jeong Hee;Suh, Young Chan;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.793-801
    • /
    • 2011
  • Existing specifications of road pavement require contractors to meet only materials and construction conditions regardless of pavement life. There are limitation of developing road pavement technology and possibility causing dispute between ordering organization and contractor with this type of specification. Research efforts to introduce performance warranty contracting are in progress in the field of road pavement to improve the problems. The performance warranty contracting gives the contractors opportunity to select materials and construction methods as they like. But they should satisfy a certain level of performance during a given period. The performance indicator and threshold value of pavement which are main elements of the warranty specification should be defined first to introduce the performance warranty contracting successfully. In this study, the performance indicator, threshold value, and warranty duration of asphalt pavement were investigated by reviewing literatures on performance warranty contracting of some states of the US. Major distresses influencing the performance of the asphalt pavement were investigated at 24 national expressway lines and national highway lines in 16 regions, and the data were analyzed to be compared to the cases of the US. Development of rational performance warranty specification for domestic asphalt pavement is expected based on the research results.

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis (실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템)

  • Hoe-Pyeong Jeong;Homin Song;Young-Cheol Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.82-89
    • /
    • 2024
  • Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.

A Study on Evaluation of High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(2) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(2))

  • 엄태선;임채용;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • In road Pavements, it is known that cement concrete pavement has superior durability, safety compared with asphalt pavement. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope special cement and concrete developing 1 day strength of over 300 kg/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The comperssive strength was over 400 kg/$\textrm{cm}^2$ and tensile at 1 day and workable time was maintained for over 1 hour.

  • PDF