• Title/Summary/Keyword: ascorbate

Search Result 430, Processing Time 0.023 seconds

Effects of Green Tea Polyphenol and Vitamin C on Type 2 Diabetic Rats Induced by Low Dose Streptozotocin Following High Fat Diet (고지방식이와 저용량 스트렙토조토신으로 유도된 2형 당뇨병 흰쥐에서 녹차 폴리페놀과 비타민 C 병합 투여 효과)

  • Lee, Byoung-Rai;Yang, Hoon;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.167-173
    • /
    • 2016
  • This study investigated the effects of green tea polyphenol and vitamin C on type 2 diabetes mellitus by administering polyphenon 60 (P60) and sodium ascorbate (SA) to diabetic rats induced by high fat diet/low-dose streptozotocin. The experimental group was divided into five different groups: non-diabetic control group (NC), diabetes control group (DC), diabetes+P60 group (DM+P60), diabetes+SA group (DM+SA), and diabetes+P60+SA group (DM+P60+SA). P60 and SA were dissolved in 0.1% drinking water. After P60 and SA were administered for 16 weeks, fasting blood glucose, plasma insulin, serum triglyceride, blood urea nitrogen (BUN), and creatinine levels as well as kidney alkaline phosphatase (AP) and ${\gamma}$-glutamyltranspeptidase (GGT) activities were measured. Fasting blood glucose level increased 5-fold in the DC group compared to the NC group. In the DM+P60 group, fasting blood glucose level decreased by 14%. In the DM+P60+SA group, fasting blood glucose level decreased by 28% compared to the DC group, whereas the DM+SA group did not show any significant difference. The homeostasis model assessment for insulin resistance index increased in the DC group and decreased in the DM+P60+SA group compared to the DC group. Serum creatinine level increased in the DC group, but decreased by 17% in the DM+P60 group and by 43% in the DM+P60+SA group compared to the DC group. The serum BUN level increased in the DC group, but decreased by 41% in the DM+P60+SA group compared to the DC group. Kidney GGT and AP activities decreased in the DC group compared to the NC group; however, they were reversed by DM+P60+SA group. These results show that combined administration of both green tea polyphenol and vitamin C had better effects on improving blood glucose level, insulin resistance, serum triglyceride level, and protecting kidneys than administration of either green tea polyphenol or vitamin C alone in the context of type 2 diabetes.

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

Effect of Korean Red Ginseng Powder on the Lipid Concentrations and Tissue Lipid Peroxidation in the Rats Fed High Fat Diet (고지방급여 흰쥐의 혈청과 간의 지질 농도 및 조직 과산화지질 농도에 미치는 홍삼분말의 영향)

  • 차재영;전방실;조영수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.124-130
    • /
    • 2003
  • Effect of Korean red ginseng (KRG) on the level of serum and liver lipids and lipid peroxidation was investigated in the rats fed high fat diet. Content of serum total cholesterol was significantly decreased (P<0.05) in KRG I group and KRG II group. Content of HDL-cholesterol was significantly increased by 69.75% and 39.15% in KRG I and KRG II group compared to control group, respectively. Atherogenic index (hi) was also significantly decreased by 74.76% and 37.38% in KRG I and KRG II groups compared to control group, respectively. Serum triglyceride content was significantly decreased (p<0.05) in only KRG II group. Antioxidative activity of KRG on the lipid peroxidation of serum and tissues in rats was also studied in vivo by measuring the formation of thiobarbituric acid reactive substances (TBARS). Contents of TBARS in the serum of both KRG groups were significantly decreased (p<0.05) and that of nonheme iron in serum was significantly increased (p<0.05) in a dose-dependent manner, which suggested that lipid peroxidation contents are inversely correlated with serum nonheme iron content. Content of TBARS in liver was significantly decreased (p<0.05) in KRG I and KRG II groups, without any influence in other tissues. Content of TBIARS in liver microsomal fractions stimulated by Fe$^{2+}$/ascorbate was significantly decreased (p<0.05) in KRG I and KRG II groups, whereas this observation did not occur in liver mitochondrial fractions. When the effect of KRG on TBARS content in the liver fractions of homogenates, microsomes, and mitochodria stimulated by Fe$^{2+}$/ascorbate was tested in vitro experimental model, TBARS of liver three fractions was significantly decreased at 6 mg/mL KRG compared with those of control. These results suggested that KRG powder have hypocholesterolemic effect as well as antioxidative effect in the serum and liver of the rats fed high fat diet.

Quality Characteristics of Sliced Raw-fish Washed by Different Methods during Storage (세척방법에 따른 생선회의 저장 중 품질특성)

  • Oh, Seung-Hee;Jung, Yoo-Kyung;Kim, Su-Hyun;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.571-577
    • /
    • 2007
  • Storage characteristics of fresh and thawed sliced raw fish (flounder and rockfish) washed in different solutions (tap water, A; jade water, B; 0.2% chitosan-ascorbate (CA), C; 0.03 ppm ozone water, D; 1.5% vinegar containing jade water, E; 1.5% vinegar and 0.2% CA containing jade water, F) at $10^{\circ}C$ were investigated. Changes in pH and acidity of thawed sliced raw fish (TS) during storage were lower than for fresh sliced raw fish (DS). The total microbial content (log cfu/g) of A stored for 3 days in DS was 6.7 (which represented an increase of 1 log cycle compared with day zero), but was 5.50 in B, 3.23 in C, 4.90 in D, 2.40 in E and 1.77 in F, the latter similar to counts at day zero. The degree of microbial contamination of DS and TS followed the order F > E > D > C > B > A in flounder, and F > E > C > D > B > A in rockfish. In general the hardness and chewiness of TS was less than for DS. While the effect of CA on TS texture was not significant in flounder, the effect showed in rockfish. For DS, the appearance in B, C and D was relatively good, as was freshness. Fishiness of flavor was in the order A > B > F > E > D > C. Overall acceptability of flounder and rockfish treated with C was better than treatment with the other washing agents. For TS the appearance of flounder and rockfish were good in B and C. The freshness of flounder and rockfish were in the order of D > C > B > A > E > F and D > C > B > A > E > F, respectively. Fishiness of the flavor of sliced raw fish was lowest in D, which also provided the best overall acceptability.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon Hae-Jeong;Baek Dong-Won;Lee Ji-Young;Nam Jae-Sung;Yun Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MSP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to playa novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum

  • Boo, Hee-Ock;Kim, Young-Sun;Kim, Hag-Hyun;Kwon, Soo-Jeong;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.239-247
    • /
    • 2015
  • This experiment was conducted to obtain the have higher contents of pharmaceutical constituents as well as higher yield from colchicine induced diploid and tetraploid extracts of Platycodon grandiflorum. In order to determine the biological activity, this study was focused to evaluate the cytotoxicity, antimicrobial on the bronthus disease bacteria, antioxidant enzyme activity of diploid and tetraploid extracts in P. grandiflorum. The activities of antioxidant enzyme according to different solvent extracts were measured as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). The cytotoxicity of methanol extracts of P. grandiflorum showed significant differences between tetraploid and diploid. That is, the cytotoxic effect against human cancer cell was higher in tetraploid than in diploid. At all extracts concentration, tetraploid samples showed high toxicity and the $IC_{50}$ (concentration causing 50% cell death) value showed the highest on HCT-116 cell ($105.91{\mu}g/mL$), and exhibited significant activity against the Hep 3B cell ($140.67{\mu}g/mL$), SNU-1066 cell ($154.01{\mu}g/mL$), Hela cell ($158.37{\mu}g/mL$), SNU-601 cell ($182.67{\mu}g/mL$), Calu-6 cell ($190.42{\mu}g/mL$), MCF-7 cell ($510.19{\mu}g/mL$). Antimicrobial activities of diploid P. grandiflorum were relatively low compared to tetraploid P. grandiflorum on most of the bacterial strains. In tetraploid P. grandiflorum, K. pneumoniae showed the clear zone formation (18~19 mm) of growth inhibition, followed by the clear zone formation of 13~15 mm on C. diphtheria and S. pyogenes. The antimicrobial activities in diploid P. grandiflorum were the highest on K. pneumonia (14~15 mm), and showed the clear zone formation of 11~12 mm on C. diphtheria and 12~13 mm on S. pyogenes. The antimicrobial activity is thought to look different depending on the bacterial strains and the polyploidy of P. grandiflorum. The root extract of P. grandiflorum had the highest (97.2%) SOD enzyme activity in ethyl acetate partition layer of tetraploid while water partition layer of diploid showed the lowest (48.6%) SOD enzyme activity. The activity of CAT showed higher values in the root of tetraploid than in the diploid of P. grandiflorum in all partition layers except butyl alcohol. The activities of APX and POD showed higher values in the root of tetraploid than in the diploid of P. grandiflorum in all fraction solvents except water layer. These results indicate that the tetraploid P. grandiflorum can be used as a source for developing cytotoxic agent and antimicrobials which can act against bronchus diseases bacterial strains.

Physiological Damages and Biochemical Alleviation to Ozone Toxicity in Five Species of genus Acer

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Kab-Yeon;Ku, Ja-Jung;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.551-560
    • /
    • 2007
  • We investigated physiological damages and biochemical alleviation of five species of genus Acer under ozone fumigation in order to assess their tolerant ability against ozone toxicity. At the end of 150 ppb $O_3$ fumigation, photosynthetic characteristics were measured, and chlorophyll contents, malondialdehyde (MDA) and antioxidative enzyme activities were analyzed in the leaves of five maple trees (Acer buergerianum, A. ginnala, A. mono, A. palmatum, and A. palmatum var. sanguineum). The reduction of chlorophyll (chl) a in ozone-exposed plants was 16.8% (A. buergerianum) to 26.7% (A. ginnala) of control plants. For the content of chi b, A. ginnala and A. palmatum var. sanguineum represented the high reduction of 26.3% and 23.6%, respectively. The highest reduction on the chi a:b ratio was observed in the leaves of A. palmatum. The reduction of net photosynthesis in five species varied from 2.4% to 37.6%. Among five species, A. ginnala showed remarkable reduction (37.6%) for net photosynthesis in comparison with control. Carboxylation efficiency differed significantly (P < 0.05) among species and between control and ozone treatment. The reduction of carboxylation efficiency was the highest in the leaves of A. ginnala (44.7%). A. palmatum var. sanguineum showed the highest increase (41.7%) for MDA content. The highest increase of superoxide dismutase (SOD) activity represented in A. palmatum (26.1%) and the increase of ascorbate peroxidase (APX) activity ranged from 16.5% (A. ginnala) to 49.1% (A. palmatum var. sanguineum). A. mono showed the highest increase (376.6%) of glutathione reductase (GR) activity under ozone fumigation and A. buergerianum also represented high increase (42.3%) of GR activity. Catalse (CAT) activity increased in the leaves of A. ginnala, A. palmatun and A. palmatum var. sanguineum under ozone exposure, whereas A. buergerianum and A. mono decreased in comparison with control plants. In conclusion, physiological markers such as chlorophyll content and photosynthesis that responded sensitively to $O_3$ in maple trees were considered as the very important indicators in order to evaluate the tolerance against $O_3$ stress, and parameters were closely related with each other. Among anti oxidative enzymes, SOD and APX might be contributed to alleviate to $O_3$ toxicity through the increase of activity in all maple trees. Therefore, these compounds can be used as a biochemical maker to assess the stress tolerance to $O_3$.

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.