Silicone breast implant insertion is a commonly performed surgical procedure for breast augmentation or reconstruction. Among various postoperative complications, infection is one of the main causes of patient readmission and may ultimately require explantation. We report a case of infective costochondritis after augmentation mammoplasty, which has rarely been reported and is therefore difficult to diagnose. A 36-year-old female visited the clinic for persistent redness, pain, and purulent discharge around the left anteromedial chest, even after breast implant explantation. Magnetic resonance imaging showed abscess formation encircling the left fourth rib and intracartilaginous and bone marrow signal alteration at the left body of the sternum and left fourth rib. En bloc resection of partial rib and adjacent sternum were done and biopsy results confirmed infective costochondritis. Ten months postoperatively, the patient underwent chest wall reconstruction with an artificial bone graft and acellular dermal matrix. As shown in this case, early and aggressive surgical debridement of the infected costal cartilage and sternum should be performed for infective costochondritis. Furthermore, delayed chest wall reconstruction could significantly contribute to the quality of life.
This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.
So Yeong Jeong;Chong Hyun Suh;Ho Young Park;Hwon Heo;Woo Hyun Shim;Sang Joon Kim
Journal of the Korean Society of Radiology
/
v.83
no.3
/
pp.473-485
/
2022
The incidence of neurodegenerative diseases in the older population has increased in recent years. A considerable number of studies have been performed to characterize these diseases. Imaging analysis is an important biomarker for the diagnosis of neurodegenerative disease. Objective and reliable assessment and precise detection are important for the early diagnosis of neurodegenerative diseases. Artificial intelligence (AI) using brain MRI applied to the study of neurodegenerative diseases could promote early diagnosis and optimal decisions for treatment plans. MRI-based AI software have been developed and studied worldwide. Representatively, there are MRI-based volumetry and segmentation software. In this review, we present the development process of brain volumetry analysis software in neurodegenerative diseases, currently used and developed AI software for neurodegenerative disease in the Republic of Korea, probable uses of AI in the future, and AI software limitations.
There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.
Transactions of the Korean Society of Mechanical Engineers A
/
v.35
no.7
/
pp.759-766
/
2011
Recently, noise reduction in room air conditioners has been one of the important issues as well as cooling efficiency. The rotary compressor is the dominant noise source in an air conditioner. A number of studies have been conducted on reducing compressor noise through improving muffler and resonator design. However the noise from the accumulator, a noise delivering path between compressor and air conditioner, is not fully taken into consideration. The accumulator contains a large inner cavity, and usually generates additional resonance noise during operation. This paper aims to conduct an optimal design for reducing accumulator noise by maximizing the transmission loss within the target frequency range that represents high-order nonlinearity. Design of experiments and radial basis function neural network are used in the context of approximate meta-models, and genetic algorithm is used as an optimization tool.
Journal of the Korea Society of Computer and Information
/
v.15
no.9
/
pp.129-136
/
2010
With mobile computing, wireless sensor network and sensor technologies, ubiquitous computing services are being realized and could satisfy the feasibility of ubiquitous healthcare to everyone. This u-Healthcare service can improve life quality of human since medical service can be provided to anyone, anytime, and anywhere. To confirm the vision of u-Healthcare service, we've implemented a healthcare system for heart disease patient which is composed of two components. Front-end collects various signals such as temperature, blood pressure, SpO2, and electrocardiogram, etc. As a backend, medical information server accumulates sensing data and performs back-end processing. To simply transfer these sensing values to a medical team may be too trivial. So, we've designed a model based on context awareness for more improved medical service which is based on artificial neural network. Through rigid experiments, we could confirm that the proposed system can provide improved medical service.
Journal of Korean Association for Spatial Structures
/
v.22
no.3
/
pp.49-56
/
2022
Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.
In this paper, a humidity sensor using a microstrip patch antenna(MPA) and polyvinyl alcohol(PVA) is studied. PVA is a polymer material whose permittivity changes with humidity, and a rectangular slot is added to the radiating edge of the MPA, which is sensitive to changes in electric field, in order to increase the sensitivity to changes in relative permittivity. After thinly coating the area around the radiating edge with the rectangular slot of the MPA fabricated on a 0.76 mm-thick RF-35 substrate with PVA, the changes in the resonant frequency and magnitude of the MPA's input reflection coefficient are measured when relative humidity is adjusted from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature and humidity chamber. Experiment results show that when the relative humidity increases from 40% to 80%, the resonance frequency of the antenna' input reflection coefficient decreases from 2.447 GHz to 2.418 GHz, whereas the magnitude increases from -7.112 dB to -3.428 dB.
In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.
Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.53-63
/
2024
Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.