Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF-2021R1C1C1014413).
References
- Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361 https://doi.org/10.1148/radiol.12110433
- Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018;14:535-562 https://doi.org/10.1016/j.jalz.2018.02.018
- Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: current imaging approach and future perspectives. Korean J Radiol 2016;17:827-845 https://doi.org/10.3348/kjr.2016.17.6.827
- Lee JY, Park JE, Chung MS, Oh SW, Moon WJ. Expert opinions and recommendations for the clinical use of quantitative analysis software for MRI-based brain volumetry. J Korean Soc Radiol 2021;82:1124-1139 https://doi.org/10.3348/jksr.2020.0174
- Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 2009;30:578-580 https://doi.org/10.3174/ajnr.A1402
- Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR; Alzheimer's Disease Neuroimaging Initiative. Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546-552 https://doi.org/10.3174/ajnr.A5061
- Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG, et al. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 2016;87:754-757 https://doi.org/10.1136/jnnp-2015-312304
- Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967-972 https://doi.org/10.1136/jnnp.55.10.967
- Park HY, Park CR, Suh CH, Shim WH, Kim SJ. Diagnostic performance of the medial temporal lobe atrophy scale in patients with Alzheimer's disease: a systematic review and meta-analysis. Eur Radiol 2021;31:9060-9072 https://doi.org/10.1007/s00330-021-08227-8
- Cavallin L, Loken K, Engedal K, Oksengard AR, Wahlund LO, Bronge L, et al. Overtime reliability of medial temporal lobe atrophy rating in a clinical setting. Acta Radiol 2012;53:318-323 https://doi.org/10.1258/ar.2012.110552
- Park HY, Suh CH, Heo H, Shim WH, Kim SJ. Diagnostic performance of hippocampal volumetry in Alzheimer's disease or mild cognitive impairment: a meta-analysis. Eur Radiol 2022 May 4 [Epub]. https://doi.org/10.1007/s00330-022-08838-9
- Enkirch SJ, Traschutz A, Muller A, Widmann CN, Gielen GH, Heneka MT, et al. The ERICA score: an MR imaging-based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease. Radiology 2018;288:226-333 https://doi.org/10.1148/radiol.2018171888
- Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer's Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with NeuroQuant® and FreeSurfer. J Neuroimaging 2015;25:721-727 https://doi.org/10.1111/jon.12229
- Persson K, Bohbot VD, Bogdanovic N, Selbaek G, Braekhus A, Engedal K. Finding of increased caudate nucleus in patients with Alzheimer's disease. Acta Neurol Scand 2018;137:224-232 https://doi.org/10.1111/ane.12800
- Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, et al. Clinically available software for automatic brain volumetry: comparisons of volume measurements and validation of intermethod reliability. Korean J Radiol 2021;22:405-414 https://doi.org/10.3348/kjr.2020.0518
- Kim M, Kim SJ, Park JE, Yun J, Shim WH, Oh JS, et al. Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer's disease. Sci Rep 2021;11:10343
- Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol 2017;208:617-623 https://doi.org/10.2214/AJR.16.16894
- Noor MBT, Zenia NZ, Kaiser MS, Mamun SA, Mahmud M. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer's disease, Parkinson's disease and schizophrenia. Brain Inform 2020;7:11
- Korea Health Industry Development Institute. A study on the investigation of new medical device classification and management system in major countries. Cheongju: KHIDI 2021
- Suh CH, Shim WH, Kim SJ, Roh JH, Lee JH, Kim MJ, et al. Development and validation of a deep learning-based automatic brain segmentation and classification algorithm for Alzheimer disease using 3D T1-weighted volumetric images. AJNR Am J Neuroradiol 2020;41:2227-2234 https://doi.org/10.3174/ajnr.A6848
- Bae JB, Lee S, Jung W, Park S, Kim W, Oh H, et al. Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci Rep 2020;10:22252
- Lee M, Kim J, Kim R EY, Kim HG, Oh SW, Lee MK, et al. Split-attention U-Net: a fully convolutional network for robust multi-label segmentation from brain MRI. Brain Sci 2020;10:974
- Kim REY, Lee M, Kang DW, Wang SM, Kim NY, Lee MK, et al. Deep learning-based segmentation to establish East Asian normative volumes using multisite structural MRI. Diagnostics (Basel) 2020;11:13
- Song M, Jung H, Lee S, Kim D, Ahn M. Diagnostic classification and biomarker identification of Alzheimer's disease with random forest algorithm. Brain Sci 2021;11:453
- Kim YJ, Han JW, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and meta-analysis. J Korean Med Sci 2014;29:903-912 https://doi.org/10.3346/jkms.2014.29.7.903
- Erkinjuntti T. Clinical criteria for vascular dementia: the NINDS-AIREN criteria. Dementia 1994;5:189-192
- Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993;43:1683-1689 https://doi.org/10.1212/WNL.43.9.1683
- Noh Y, Lee Y, Seo SW, Jeong JH, Choi SH, Back JH, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. J Stroke Cerebrovasc Dis 2014;23:636-642 https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.002
- Mitchell T, Lehericy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol 2021;78:1262-1272 https://doi.org/10.1001/jamaneurol.2021.1312
- Pyatigorskaya N, Magnin B, Mongin M, Yahia-Cherif L, Valabregue R, Arnaldi D, et al. Comparative study of MRI biomarkers in the substantia nigra to discriminate idiopathic Parkinson disease. AJNR Am J Neuroradiol 2018;39:1460-1467 https://doi.org/10.3174/ajnr.A5702
- Frosini D, Cosottini M, Volterrani D, Ceravolo R. Neuroimaging in Parkinson's disease: focus on substantia nigra and nigro-striatal projection. Curr Opin Neurol 2017;30:416-426 https://doi.org/10.1097/WCO.0000000000000463
- Kim EY, Sung YH, Lee J. Nigrosome 1 imaging: technical considerations and clinical applications. Br J Radiol 2019;92:20180842
- Kim PH, Lee DH, Suh CH, Kim M, Shim WH, Kim SJ. Diagnostic performance of loss of nigral hyperintensity on susceptibility-weighted imaging in parkinsonism: an updated meta-analysis. Eur Radiol 2021;31:6342-6352 https://doi.org/10.1007/s00330-020-07627-6
- Nam Y, Gho SM, Kim DH, Kim EY, Lee J. Imaging of nigrosome 1 in substantia nigra at 3T using multiecho susceptibility map-weighted imaging (SMWI). J Magn Reson Imaging 2017;46:528-536 https://doi.org/10.1002/jmri.25553
- Shin DH, Heo H, Song S, Shin NY, Nam Y, Yoo SW, et al. Automated assessment of the substantia nigra on susceptibility map-weighted imaging using deep convolutional neural networks for diagnosis of Idiopathic Parkinson's disease. Parkinsonism Relat Disord 2021;85:84-90 https://doi.org/10.1016/j.parkreldis.2021.03.004
- Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125(Pt 4):861-870 https://doi.org/10.1093/brain/awf080
- Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017;32:853-864 https://doi.org/10.1002/mds.26987
- Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71:670-676 https://doi.org/10.1212/01.wnl.0000324625.00404.15
- Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246:214-221 https://doi.org/10.1148/radiol.2453061703
- Chougar L, Faouzi J, Pyatigorskaya N, Yahia-Cherif L, Gaurav R, Biondetti E, et al. Automated categorization of parkinsonian syndromes using magnetic resonance imaging in a clinical setting. Mov Disord 2021;36:460-470 https://doi.org/10.1002/mds.28348
- Martin-Laez R, Caballero-Arzapalo H, Lopez-Menendez LA, Arango-Lasprilla JC, Vazquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurg 2015;84:2002-2009 https://doi.org/10.1016/j.wneu.2015.07.005
- Andersson J, Rosell M, Kockum K, Lilja-Lund O, Soderstrom L, Laurell K. Prevalence of idiopathic normal pressure hydrocephalus: a prospective, population-based study. PLoS One 2019;14:e0217705
- Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57(3 Suppl):S4-S16 https://doi.org/10.1227/01.NEU.0000168185.29659.C5
- Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum (Minneap Minn) 2016;22:579-599
- Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo) 2012;52:775-809 https://doi.org/10.2176/nmc.52.775
- Park HY, Kim M, Suh CH, Lee DH, Shim WH, Kim SJ. Diagnostic performance and interobserver agreement of the callosal angle and Evans' index in idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Eur Radiol 2021;31:5300-5311 https://doi.org/10.1007/s00330-020-07555-5
- Park HY, Park CR, Suh CH, Kim MJ, Shim WH, Kim SJ. Prognostic utility of disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal pressure hydrocephalus treated with ventriculoperitoneal shunt surgery: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2021;42:1429-1436 https://doi.org/10.3174/ajnr.A7168
- Takagi K, Watahiki R, Machida T, Onouchi K, Kato K, Oshima M. Reliability and interobserver variability of evans' index and disproportionately enlarged subarachnoid space hydrocephalus as diagnostic criteria for idiopathic normal pressure hydrocephalus. Asian J Neurosurg 2020;15:107-112 https://doi.org/10.4103/ajns.AJNS_354_19
- Duan W, Zhang J, Zhang L, Lin Z, Chen Y, Hao X, et al. Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning. Medicine (Baltimore) 2020;99:e21229
- Gunter NB, Schwarz CG, Graff-Radford J, Gunter JL, Jones DT, Graff-Radford NR, et al. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin 2019;21:101605
- Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410 https://doi.org/10.3348/kjr.2019.0025
- Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809 https://doi.org/10.1148/radiol.2017171920
- Lee J, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, et al. Evaluation of reproducibility of brain volumetry between commercial software, inbrain and established research purpose method, FreeSurfer. J Clin Neurol 2021;17:307-316 https://doi.org/10.3988/jcn.2021.17.2.307