• 제목/요약/키워드: artificial pinning center

검색결과 7건 처리시간 0.019초

Design of flux pinning property in REBCO coated conductors with artificial pinning centers

  • Matsushita, Teruo;Kiuchi, Masaru
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2018
  • The improvement of critical current properties of $REBa_2Cu_3O_{7-x}$ (REBCO) coated conductors by introducing artificial pinning centers (APCs) is examined with respect to the field-angle anisotropy, high-field performance and relaxation property with time. Nano-rods along the c-axis introduced by PLD method and isotropic nano-particles introduced by TFA-MOD method are treated. The theoretical analysis is also shown to understand the effect of APCs quantitatively. The effects of superconducting layer thickness that influences the high-field performance and relaxation property are also discussed. It is shown that the upper critical field, which is another important factor to determine the high-field property, can be improved by introduction of APCs through electron scattering at interfaces with the superconducting matrix. The optimum critical current property can be obtained by properly designing the morphology and number density of APCs and the superconducting layer thickness.

YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교 (Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers)

  • 위창환;;;강병원;김이정;오상준;이남훈;강원남
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.90-96
    • /
    • 2011
  • We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

Superconductivity of HTS REBCO coated conductors with multi-superconducting layers

  • Ye Rim, Lee; Kyu Jeong, Song;Gwan Tae, Kim;Sang Soo, Oh;Hong Soo, Ha
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.29-35
    • /
    • 2022
  • We fabricated MHOS (multi-HTS layers on one substrate) high-temperature superconducting (HTS) REBCO conductors using HTS REBCO coated conductor (CC) A-specimen, which induces an artificial magnetic flux pinning effect, and HTS REBCO CC B-specimen, that does not induce this effect. The superconducting magnetic properties of the fabricated MHOS conductors were examined by measuring their magnetic moment m(H) curves using a physical property measurement system (QD PPMS-14). The critical current density (Jc) characteristics of our four-layered MHOS HTS REBCO conductor specimens such as BAAB, BBBB, and AAAA were lower than those of their two-layered and three-layered counterparts. At a temperature T of 30 K the magnetic flux pinning physical indicator δ values (obtained from the relationship Jc ∝ H) of the three-layer ABA (δ = 0.35) and two-layer AB (δ = 0.43) specimens were found to be significantly lower than those of the four-layer ABBA (δ = 0.51), BAAB (δ = 0.60), AAAA (δ = 0.78) and BBBB (δ = 0.81) structures.

ZnO 나노막대가 형성된 STO기판에 증착한 Y-Ba-Cu-O 박막의 미세구조 분석 (Microstructure Analysis of Y-Ba-Cu-O thin Films Grown on STO Substrates with Controlled ZnO Nanorods)

  • 오세권;장건익;;강병원;김경원;이초연;현옥배
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.47-51
    • /
    • 2009
  • For many large-scale applications of high-temperature superconducting materials, large critical current density ($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films for enhancement of their $J_c$. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-{\delta}}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as pinning centers. Au catalyst nanoparticles were synthesized on STO substrates with self assembled monolayer to control the number of ZnO nanorods. The density of Au nanoparticles is approximately $240{\sim}260{\mu}m^{-2}$ with diameters of $41{\sim}49nm$. ZnO nanorods were grown on STO by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6{\mu}m$ in length respectively. YBCO films deposited directly on STO substrates show the c-axis orientation, while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

  • PDF

Estimation of the critical current of race-track HTS magnet considering angular dependency

  • Lee, Kyubong;Sim, Kideok;Lee, Changyoung;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.47-50
    • /
    • 2015
  • The high temperature superconducting (HTS) magnet has been developed for the high magnetic field applications such as NMR, MRI and other industrial machinery. In designing process of these HTS magnets, the accurate estimation on the critical current (Ic) is essential to predict and secure the electromagnetic performance. The critical current of 2G HTS tape has anisotropic Ic degradation characteristics with the application of magnetic field - angular dependency of critical current. It is known that the perpendicular magnetic field to the face of HTS tape makes dominant degradation on the critical current for conventional 2G HTS tape. However, recently developed 2G HTS tape has more complex characteristics due to the artificial pinning center. Therefore, the method for Ic estimation reflecting such characteristics of 2G HTS tape needs to be devised. The method considering the angular dependency is introduced in this paper. And the result of newly devised method is compared with that of previous method.

Progress in R&D of coated conductor in M-PACC project

  • Izumi, T.;Ibi, A.;Nakaoka, K.;Taneda, T.;Yoshida, T.;Takagi, Y.;Nakamura, T.;Machi, T.;Katayama, K.;Sakai, N.;Yoshizumi, M.;Koizumi, T.;Kimura, K.;Kato, T.;Kiss, T.;Shiohara, Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2014
  • The five-year national project in Japan for R&D of coated conductors and applications, named as the Materials and Power Applications of Coated Conductors (M-PACC) project, was finished at the end of FY2013. The project consists of four sub-themes as cable, transformer, SMES and coated conductors. In the theme of coated conductors, the fabrication process had been developed to satisfy the requirements from the applications such as in-field $I_c$ performance, low AC loss in the long tapes etc. Through the project, the remarkable progress was achieved as follows; a high in-field minimum $I_c$ value over 54A/cm-width under 3T at 77K was realized in a 200m long EuBCO tape with artificial pinning centers of $BaHfO_3$ by the pulsed laser deposition (PLD) technique on the IBAD template. On the other hand, the AC loss reduction was confirmed in the tapes fabricated by both PLD and the metal organic deposition (MOD) techniques by scribing 100m tapes into 10-filamments. Additionally, the mechanism of the delamination phenomenon was systematically investigated and the strength was improved by eliminating the origins of the weak points in the films. Through the development, all targeted goals were accomplished and the several results were appreciated as a world champion data.