• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.031 seconds

Functional Classification of Myoelectric Signals Using Neural Network for a Artificial Arm Control Strategy (인공팔 제어를 위한 근전신호의 신경회로망을 이용한 기능분석)

  • 손재현;홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1027-1035
    • /
    • 1994
  • This paper aims to make an artificial arm control strategy. For this, we propose a new feature extraction method and design artificial neural network for the functional classification of myoelectric signal(MES). We first transform the two channel myoelectric signals (MES) for biceps and triceps into frequency domain using fast Fourier transform (FFT). And features were obtained by comparing the magnitudes of ensemble spectrum data and used as inputs to the three-layer neural network for the learning. By changing the number of units in hidden layer of neural network we observed the improvement of classification performance. To observe the effeciency of the proposed scheme we performed experiments for classification of six arm functions to the three subjects. And we obtained on average 94[%] the ratio of classification.

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

Empirical Bushing Model using Artificial Neural Network (인공신경망을 이용한 실험적 부싱모델링)

  • 손정현;유완석;박동운
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.151-157
    • /
    • 2003
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model.

Estimation of Nugget Size in Resistance Spot Welding for Galvanized Steel Using an Artificial Neural Networks (아연도금강판의 저항 점용섭에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 박종우;이정우;최용범;장희석
    • Proceedings of the KWS Conference
    • /
    • 1992.10a
    • /
    • pp.91-95
    • /
    • 1992
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitive analyses of sampled process variables have been attempted to predict nugget size. In this paper, dynamic resistance and electrode movement signal which is a good indicative of the nugget size was examined by introducing an artificial neural network estimator. An artificial neural feedforward network with back-propagation of error was applied for the estimation of the nugget size. The prediction by the neural network is in good agreement with the actual nugget size for resistance spot welding of galvanized steel. The results are quite promising in that the quantitative estimation of the invisible nugget size can be achieved without conventional destructive testing of welds.

  • PDF

Application of artificial neural networks in the analysis of the continuous contact problem

  • Yaylaci, Ecren Uzun;Oner, Erdal;Yaylaci, Murat;Ozdemir, Mehmet Emin;Abushattal, Ahmad;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.35-48
    • /
    • 2022
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for contact pressures and contact lengths under the rigid punch, the initial separation loads, and the initial separation distances of a contact problem. The problem consisted of two elastic infinitely layers (EL) loaded by means of a rigid cylindrical punch and resting on a half-infinite plane (HP). Firstly, the problem was formulated and solved theoretically using the Theory of Elasticity (ET). Secondly, the contact problem was extended based on the ANN. External load, the radius of punch, layer heights, and material properties were created by giving examples of different values used at the training and test stages of ANN. Finally, the accuracy of the trained neural networks for the case was tested using 134 new data, generated via ET solutions to determine the best network model. ANN results were compared with ET results, and well agreements were achieved.

Prediction of calcium leaching resistance of fly ash blended cement composites using artificial neural network

  • Yujin Lee;Seunghoon Seo;Ilhwan You;Tae Sup Yun;Goangseup Zi
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.315-325
    • /
    • 2023
  • Calcium leaching is one of the main deterioration factors in concrete structures contact with water, such as dams, water treatment structures, and radioactive waste structures. It causes a porous microstructure and may be coupled with various harmful factors resulting in mechanical degradation of concrete. Several numerical modeling studies focused on the calcium leaching depth prediction. However, these required a lot of cost and time for many experiments and analyses. This study presents an artificial neural network (ANN) approach to predict the leaching depth quickly and accurately. Totally 132 experimental data are collected for model training and validation. An optimal ANN model was proposed by ANN topology. Results indicate that the model can be applied to estimate the calcium leaching depth, showing the determination coefficient of 0.91. It might be used as a simulation tool for engineering problems focused on durability.

Deep Learning Network Approach for Pain Recognition Using Physiological Signals (생리적 신호를 이용한 통증 인식을 위한 딥 러닝 네트워크)

  • Phan, Kim Ngan;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1001-1004
    • /
    • 2021
  • Pain is an unpleasant experience for the patient. The recognition and assessment of pain help tailor the treatment to the patient, and they are also challenging in the medical. In this paper, we propose an approach for pain recognition through a deep neural network applied to pre-processed physiological. The proposed approach applies the idea of shortcut connections to concatenate the spatial information of a convolutional neural network and the temporal information of a recurrent neural network. In addition, our proposed approach applies the attention mechanism and achieves competitive performance on the BioVid Heat Pain dataset.

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin;Gebrail Bekdas;Umit Isikdag;Sinan Melih Nigdeli;Zong Woo Geem
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.