Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.1.035

Application of artificial neural networks in the analysis of the continuous contact problem  

Yaylaci, Ecren Uzun (Surmene Faculty of Marine Science, Karadeniz Technical University)
Oner, Erdal (Department of Civil Engineering, Bayburt University)
Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University)
Ozdemir, Mehmet Emin (Department of Civil Engineering, Cankiri Karatekin University)
Abushattal, Ahmad (Department of Physics, Al-Hussein Bin Talal University)
Birinci, Ahmet (Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Structural Engineering and Mechanics / v.84, no.1, 2022 , pp. 35-48 More about this Journal
Abstract
This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for contact pressures and contact lengths under the rigid punch, the initial separation loads, and the initial separation distances of a contact problem. The problem consisted of two elastic infinitely layers (EL) loaded by means of a rigid cylindrical punch and resting on a half-infinite plane (HP). Firstly, the problem was formulated and solved theoretically using the Theory of Elasticity (ET). Secondly, the contact problem was extended based on the ANN. External load, the radius of punch, layer heights, and material properties were created by giving examples of different values used at the training and test stages of ANN. Finally, the accuracy of the trained neural networks for the case was tested using 134 new data, generated via ET solutions to determine the best network model. ANN results were compared with ET results, and well agreements were achieved.
Keywords
artificial neural network; contact problem; theory of elasticity;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, B.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.   DOI
2 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a) "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.   DOI
3 Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput. Aid. Civil Infrastr. Eng., 4(4), 247-256. https://doi.org/10.1111/j.1467-8667.1989.tb00026.x.   DOI
4 Oner, E., Adiyaman, G. and Birinci, A. (2017), "Continuous contact problem of a functionally graded layer resting on an elastic half plane", Arch. Mech., 69(1), 53-73.
5 Oner, E. and Birinci, A. (2020), "Investigation of the solution for discontinuous contact problem between a functionally graded (FG) layer and homogeneous half-space", Arch. Appl. Mech., 90, 2799-2819. https://doi.org/10.1007/s00419-020-01750-y.   DOI
6 Oner, E. (2021), "Frictionless contact mechanics of an orthotropic coating/isotropic substrate system", Comput. Concrete., 28(2), 209-220. https://doi.org/10.12989/cac.2021.28.2.209.   DOI
7 Parol, J., Ben-Nakhi, A., Al-Sanad, S., Al-Qazweeni, J., Al-Duaij, H. J. and Kamal, H. (2019), "Experimental and numerical investigation of reinforced concrete beams containing vertical openings", Struct. Eng. Mech., 72(3), 383-393. https://doi.org/10.12989/sem.2019.72.3.383.   DOI
8 Pradhan, B. and Sameen, M.I. (2020), "Review of traffic accident predictions with neural networks", Laser Scanning Systems in Highway and Safety Assessment, Springer, Switzerland.
9 Saha, P., Prasad, M.L.V. and Kumar, P.R. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.   DOI
10 Schalkoff, R.J. (1997), Artificial Neural Networks, McGraw-Hill Higher Education, New York, USA.
11 Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.   DOI
12 Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput. Aid. Civil Infrastr. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219.   DOI
13 Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mechanica, 227(3), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y.   DOI
14 Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.   DOI
15 Oner, E. and Birinci, A. (2014), "Continuous contact problem for two elastic layers resting on an elastic half infinite plane", J. Mech. Mater. Struct., 9(1), 105-119. https://doi.org/10.2140/jomms.2014.9.105.   DOI
16 Nandal, M., Mor, N. and Sood, H. (2021), "An overview of use of artificial neural network in sustainable transport system", Computational Methods and Data Engineering, 83-91.
17 Negassi, M., Suarez-Ibarrola, R., Hein, S., Miernik, A. and Reiterer, A. (2020), "Application of artificial neural networks for automated analysis of cystoscopic images: A review of the current status and future prospects", World J. Urol., 38, 2349-2358. https://doi.org/10.1007/s00345-019-03059-0.   DOI
18 Nriagu, J.O. (2019), Encyclopedia of Environmental Health, Elsevier, Amsterdam, Netherlands.
19 Oner, E., Yaylaci, M. and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333.   DOI
20 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
21 Kalogirou, S.A. (2001), "Artificial neural networks in renewable energy systems applications: A review", Renew. Sustain. Energy Rev., 5(4), 373-401. https://doi.org/10.1016/S1364-0321(01)00006-5.   DOI
22 Aizikovich, S.M., Mitrin. B.I., Seleznev. N.M., Wang, Y.C. and Volkov, S.S. (2016), "Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation", Struct. Eng. Mech., 58(4), 613-625. https://doi.org/10.12989/sem.2016.58.4.613.   DOI
23 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.   DOI
24 Hecht-Nielsen, R. (1988), "Neurocomputing: picking the human brain", IEEE Spectr., 25(3), 36-41. https://doi.org/10.1109/6.4520.   DOI
25 Keshtegar, B., Xiao, M., Kolahchi, R. and Trung, N.T. (2020), "Reliability analysis of stiffened aircraft panels using adjusting mean value method", AIAA J., 58(12), 5448-5458. https://doi.org/10.2514/1.J059636.   DOI
26 Huang, R.B., Du, Q.S., Wei, Y.T., Pang, Z.W., Wei, H. and Chou, K.C. (2009), "Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design", J. Theor. Biol., 256(3), 428-435. https://doi.org/10.1016/j.jtbi.2008.08.028.   DOI
27 Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compd., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.   DOI
28 Oner, E. (2021), "Two-dimensional frictionless contact analysis of an orthotropic layer under gravity", J. Mech. Mater. Struct., 16(4), 573-594. https://doi.org/10.2140/jomms.2021.16.573.   DOI
29 Trinh, M.C. and Jun, H. (2021), "Stochastic vibration analysis of functionally graded beams using artificial neural networks", Struct. Eng. Mech., 78(5), 529-543. https://doi.org/10.12989/sem.2021.78.5.529.   DOI
30 Yaylaci, M, Abanoz, M, Uzun Yaylaci, E, Olmez, H, Sekban, M.D and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.   DOI
31 Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022) "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech., 102(2). https://doi.org/10.1002/zamm.202100287.   DOI
32 Erdogan, F., Gupta, G. and Cook, T.S. (1973), "Numerical solution of singular integral equations", Methods of Analysis and Solutions of Crack Problems, Springer, Dordrecht.
33 Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.   DOI
34 Cakiroglu, E., Comez, I. and Erdol, R. (2005), "Application of artificial neural network to double receding contact problem with a rigid stamp", Struct. Eng. Mech., 21, 205-220. https://doi.org/10.12989/sem.2005.21.2.205.   DOI
35 Dawson, C.W. and Wilby, R. (1998), "An artificial neural network approach to rainfall-runoff modelling", Hydrol. Sci. J., 43(1), 47-66. https://doi.org/10.1080/02626669809492102.   DOI
36 Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concrete Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.   DOI
37 Hore, S., Chatterjee, S., Sarkar, S., Dey, N., Ashour, A. S., Balas-Timar, D. and Balas, V.E. (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. https://doi.org/10.12989/sem.2016.58.3.459.   DOI
38 Fath, A.H., Madanifar, F. and Abbasi, M. (2020), "Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems", Petroleum, 6, 80-91. https://doi.org/10.1016/j.petlm.2018.12.002.   DOI
39 Waziri, B.S., Bala, K. and Bustani, S.A. (2017), "Artificial neural networks in construction engineering and management", IJAEC, 6(1), 50-60. http://doi.org/10.7492/IJAEC.2017.006.   DOI
40 Trujillo, M.C.R., Alarcon, T.E., Dalmau, O.S. and Ojeda, A.Z. (2017), "Segmentation of carbon nanotube images through an artificial neural network", Soft Comput., 21, 611-625. https://doi.org/10.1007/s00500-016-2426-1.   DOI
41 Wui, D. and Wang, G.G. (2021), "Causal artificial neural network and its applications in engineering design", Eng. Appl. Artif. Intell., 97, 104089. https://doi.org/10.1016/j.engappai.2020.104089.   DOI
42 Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006), "A multilayer perceptron based medical decision support system for heart disease diagnosis", Exp. Syst. Appl., 30(2), 272-281. https://doi.org/10.1016/j.eswa.2005.07.022.   DOI
43 Yaswanth, K.K., Revathy, J. and Gajalakshmi, P. (2021), "Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites", Comput. Concrete, 28(1), 55-68. https://doi.org/10.12989/cac.2021.28.1.055.   DOI
44 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
45 Kolahchi, R., Tian, K., Keshtegar, B., Li, Z., Trung, N.T. and Thai, D.K. (2022), "AK-GWO: a novel hybrid optimization method for accurate optimum hierarchical stiffened shells", Eng. Comput., 38, 29-41. https://doi.org/10.1007/s00366-020-01124-6.   DOI
46 Keshtegar, B., Nehdi, M.L., Trung, N.T. and Kolahchi, R. (2021), "Predicting load capacity of shear walls using SVR-RSM model", Appl. Soft Comput., 112, 107739. https://doi.org/10.1016/j.asoc.2021.107739.   DOI
47 Kolahchi, R. and Kolahdouzan, F. (2021a), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.   DOI
48 Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021b), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.   DOI
49 Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.   DOI
50 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27, 199-210. https://doi.org/10.12989/cac.2021.27.3.199.   DOI
51 Kostinakis, K.G. and Morfidis, K.E. (2020), "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.   DOI
52 Liu, Z., Yan, J. and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane.", Struct. Eng. Mech., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329.   DOI
53 Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M. M., Baharom, S. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471.   DOI
54 Sundararaj, A., Ravi, R., Thirumalai, P. and Radhakrishnan, G. (1999), "Artificial neural network applications in electrochemistry-a review", Bull. Electrochem., 15(12), 552-555.
55 Yucel, M., Nigdeli, S.M. and Bekdas, G. (2020), "Artificial neural networks (anns) and solution of civil engineering problems: anns and prediction applications", Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineerin, IGI Global.
56 Mercier, J.P., Zambelli, G. and Kurz, W. (2002), Introduction to Materials Science, Elsevier, Paris, France.
57 Meyers, R.A. (1987), Encyclopedia of Physical Science and Technology, Academic Press.
58 Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.   DOI
59 Adeli, H. and Hung, S. (1995), Machine Learning: Neural Networks, General Algorithms, and Fuzzy Systems, Wiley, New York.
60 Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., Olmez, H., Sekban, M.D. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.   DOI
61 Walczak, S. (2018), "Artificial neural networks", Encyclopedia of Information Science and Technology, Fourth Edition, IGI Global.
62 Krenk, S. (1975), "On quadrature formulas for singular integral equations of the first and the second kind", Quart. Appl. Math., 33(3), 225-232. https://doi.org/10.1090/qam/448967.   DOI
63 McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biol., 5(4), 115-133. https://doi.org/10.1007/BF02478259.   DOI
64 Vanluchene, R.D. and Sun, R. (1990), "Neural networks in structural engineering", Comput. Aid. Civil Infrastr. Eng., 5(3), 207-215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x.   DOI
65 Wani, I.M. and Arora, S. (2020), "Deep neural networks for diagnosis of osteoporosis: A review", Proceedings of ICRIC 2019, 597, 65-78. https://doi.org/10.1007/978-3-030-29407-6_6.   DOI
66 Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.   DOI
67 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
68 Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78, 585-597. https://doi.org/10.12989/sem.2021.78.5.585.   DOI
69 Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022a), "Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.   DOI