• Title/Summary/Keyword: artificial immune network

Search Result 52, Processing Time 0.043 seconds

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

Design of Autonomous Mobile Robot System Based on Artificial Immune Network and Internet (인공 면역망과 인터넷에 의한 자율이동로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.522-531
    • /
    • 2001
  • Recently conventional artificial intelligence(AI) approaches have been employed to build action selectors for the autonomous mobile robot(AMR). However, in these approaches, the decision making process to choose an action from multiple competence modules is still an open question. Many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we attempt to construct an action selector for an AMR based on the artificial immune network and internet. The information from vision sensors is used for antibody. We propose a learning method for artificial immune network using evolutionary algorithm to produce antibody automatically. The internet environment for an AMR action selector shows the usefulness of the proposed learning artificial immune network application.

  • PDF

Introduction to a Novel Optimization Method : Artificial Immune Systems (새로운 최적화 기법 소개 : 인공면역시스템)

  • Yang, Byung-Hak
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.458-468
    • /
    • 2007
  • Artificial immune systems (AIS) are one of natural computing inspired by the natural immune system. The fault detection, the pattern recognition, the system control and the optimization are major application area of artificial immune systems. This paper gives a concept of artificial immune systems and useful techniques as like the clonal selection, the immune network theory and the negative selection. A concise survey on the optimization problem based on artificial immune systems is generated. The overall performance of artificial immune systems for the optimization problem is discussed.

A Feasibility Study on Application of Immune Network for Intelligent Controller of a Multivariable System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.5-115
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a multivariable system. Then artificial immune network always has a new paraller decentralized processing mechanism for various situations, since antibodies communication to each other among different species of antibodies/B-cells through the simulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach ...

  • PDF

Negative Selection within an Artificial Immune System for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 시스템에서의 부정적 선택( Negative Selection) 알고리즘)

  • Kim, Jung-Won;Bentley, Peter J.;Choi, Jong-Uk
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.273-276
    • /
    • 2000
  • This paper describes on-going research, applying an artificial immune system to the problem of network intrusion detection. The paper starts by introducing the motivation and rationale of this research. After describing the overall architecture of the proposed artificial immune system fur network intrusion detection, the real network traffic data and its profile features used in this research are explained. As the first step of this effort, the negative selection algorithm, which is one of three significant evolutionary stages comprising an overall artificial immune system, is investigated and initial results are briefly discussed. Finally, the direction of future work is discussed based on this initial result and the contribution of this research is addressed.

  • PDF

Optimization of Distributed Autonomous Robotic Systems Based on Artificial Immune Systems

  • Hwang, Chul-Min;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.

  • PDF

A Development of Artificial Immune Model for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 모델의 개발)

  • ;Peter Brently
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.373-379
    • /
    • 1999
  • This paper investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's

  • PDF

A Development of Artificial Immune Model for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 모델의 개발)

  • ;Peter Brently
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.373-379
    • /
    • 1999
  • This pqer investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's.

  • PDF

Action Selections for an Autonomous Mobile Robot by Artificial Immune Network (인공면역망에 의한 자율이동로봇의 행동 선택)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.532-532
    • /
    • 2000
  • Conventional artificial intelligence systems are not properly responding under dynamically changing environments. To overcome this problem, reactive planning systems implementing new Al principles, called behavior-based Al or emergent computation, have been proposed and confirmed their usefulness. As another alternative, biological information processing systems may provide many feasible ideas to these problems. Immune system, among these systems, plays important roles to maintain its own system against dynamically changing environments. Therefore, immune system would provide a new paradigm suitable for dynamic problem dealing with unknown environments. In this paper, a new approach to behavior-based Al by paying attention to biological immune system is investigated. The feasibility of this method is confirmed by applying to behavior control of an autonomous mobile robot in cluttered environment.

  • PDF

Intelligent Tuning Of a PID Controller Using Immune Algorithm (면역 알고리즘을 이용한 PID 제어기의 지능 튜닝)

  • Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.8-17
    • /
    • 2002
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems with a less flexible result to the external behavior. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. In addition to that, tuning performance cannot be guaranteed with regards to a plant with non-linear characteristics or many kinds of disturbances. Along with these, this paper used immune algorithm in order that a PID controller can be more adaptable controlled against the external condition, including moise or disturbance of plant. Parameters P, I, D encoded in antibody randomly are allocated during selection processes to obtain an optimal gain required for plant. The result of study shows the artificial immune can effectively be used to tune, since it can more fit modes or parameters of the PID controller than that of the conventional tuning methods.