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This paper describes on-going research, applying an artificial immune system to the problem of network intrusion
detection. The paper starts by introducing the motivation and rationale of this research. After describing the overall
architecture of the proposed artificial immune system for network intrusion detection, the real network traffic data
and its profile features used in this research are explained. As the first step of this effort, the negative selection
algorithm, which is one of three significant evolutionary stages comprising an overall artificial immune system, is
investigated and initial results are briefly discussed. Finally, the direction of future work is discussed based on this
initial result and the contribution of this research is addressed.

1. Entroduction

The biological immune system has been successful at
protecting the human body against a vast variety of foreign
pathogens [10]. A growing number of computer scientists
have carefully studied the success of this competent natural
mechanism and proposed computer immune models for
solving various problems including fault diagnosis, virus
detection, and mortgage fraud detection [2]. Among these
various areas, intrusion detection is a vigorous research area
where the employment of an artificial immune system has
been examined [2], [9]. The main goal of intrusion detection
is to detect unauthorised use, misuse and abuse of computer
systems by both system insiders and external intruders.
Among automated intrusion detection systems, a particular
system for network intrusion detection, known as a network-
based intrusion detection system (IDS), monitors any number
of hosts on a network by scrutinising the audit trails of
multiple hosts and network traffic. This research proposes a
novel approach to building a network-based IDS, which is
inspired by a human immune system.

Currently many network-based IDS’s have been developed
using diverse approaches [7]. Nevertheless, there still remain
unresolved problems for building an effective network-based
IDS [5]. As one approach of providing the solutions to these
problems, previous work [6] identified a set of general
requirements for a successful network-based IDS and three
design goals to satisfy these requirements: being distributed,
self-organising and lightweight. In addition, Kim and Bentley

[5] introduced a number of remarkable features of human
immune systems that satisfy these three design goals. It is
anticipated that the adoption of these features should help the
construction of an effective network-based IDS.

However, it is not clear yet how to implement these
beneficial features for a real network-based IDS. For instance,
Hofmeyr’s work [4] showed the unique features of artificial
immune systems that are advantageous for network intrusion
detection, but this system’s applicability to detect various real
network intrusions was not validated. This is because his
system used the small set of selected profile features and thus
detected only a limited number of network intrusions {4]. As
a consequence, this research focuses on building an artificial
immune system that is more applicable to the detection of
various real network intrusions.

2. System Overview

The main idea of this model is distinguishing self, which is
normal, from non-self, which is abnormal [9]. In this research,
with respect to network intrusion detection, we view the
normal activities of monitored networks as self and their
abnormal activities as non-self. Many sophisticated network
intrusions such as sweeps, co-~ordinated attacks and Internet
worms are detected by monitoring the anomalies of network
traffic patterns. Thus, the artificial immune model is designed
for distinguishing normal network activities from abnormal
network activities and is expected to detect various network
intrusions.
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Figure 1: The Physical Architecture of
an Artificial Immune System

- = Netwarh prckets

More details about this model are explained in [5], [6] and
a brief summary follows. The artificial immune model for
network intrusion detection consists of a primary IDS and
secondary IDS’s {6]. For a human body, at the bone marrow
and the thymus, various detector cells, called antibodies, are
continuously generated and distributed to secondary lymph
nodes, where antibodies reside to monitor living cells. The
distributed antibodies monitor all living celis and detect non-
self cells, called antigens, invading into the human body. For
the artificial immune model, the primary IDS, which we view
as the bone marrow and thymus, generates numerous detector
sets. They describe abnormal patterns of network traffic
packets. They are unique and transferred to each local host.
We view local hosts as secondary lymph nodes, detectors as
antibodies and network intrusions as antigens. At the
secondary IDS’s, which are local hosts, detectors are used by
background processes which monitor whether non-self
network traffic patterns are observed from network traffic
patierns profiled at the monitored local host. The primary
IDS and each secondary IDS have communicators to allow
the transfer of information between each other. Figure 1
shows the physical architecture of artificial immune system
proposed in this research,

For the proposed artificial immune system, the several
sophisticated mechanisms of the human immune system
which allow it to satisfy three design goals of a competent
network-based IDS are embedded in three evolutionary
stages: gene library evolution, negative selection and clonal
selection. (Figure 2).

Gene library evolution simulates the first stage of
evolution, which leams knowledge of currently existing
antigens. This process allows the model to be lightweight and
self-organising. Gene expression and negative selection form
the second stage of evolution, generating diverse pre-
detectors and selecting mature detector sets by eliminating
false pre-detectors in a self-organising way. The transfer of
unique detector sets to the secondary IDS’s also occurs at this
stage, making the model distributed. Clonal selection is the
third stage of evolution, detecting various intrusions with a
limited number of detector sets using approximate binding,
and generating memory detectors. The generality and
efficiency of these mechanisms results in the model being
lightweight. In addition, this process drives the gene library
evolution in the primary IDS. These three stages are co-
ordinated across a network to satisfy the three goals for
designing effective IDS's: being distributed, self-organising
and lightweight. Analysis of the characteristics of this unified

evolutionary approach show that, unlike existing approaches,
the proposed artificial immune model does satisfy the
requirements of network-based IDS’s.
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Figure 2. Conceptual Architecture of the Artificial

Immune Model

3. Network Traffic Data VS Network Intrusion Signature
The data chosen for this work was collected for a part of an
Information Exploration Shootout, which is a project
providing several data sets publicly available for exploration
and discovery and collecting the results of participants. It is
available at http://iris.cs.uml.edu;8080/network html. This set
was created by capturing TCP packet headers that passed
between the intra-LAN and external networks as well as
within the intra-LAN. This set consists of five different data
sets. The TCP packet headers of the first set were collected
when no intrusion occurred and the other four sets were
collected when four different intrusions were simulated.
These intrusions are: IP spoofing attack, guessing rlogin or
ftp passwords, scanning attack and network hopping attack.
The details of attack signatures and attack points of the four
different attacks are not available,

The data originally had the fields of neiwork packet
capturing tool’s format such as time stamp, source IP address,
source port, destination IP address, destination port and etc.
However, the primitive fields of captured network packets
are not enough to build a meaningful profile. Consequently, it
is essential to build a data-profiling program to extract more
meaningful fields, which can distinguish “normal” and
“abnormal”. Many researchers have identified the security
holes of TCP protocols {8] and so the fields used by our
profiles are selected based on the extensive study of this
research. They are usually defined to describe the activities of
each single connection.

The automated profile program was developed to extract
the connection level information from TCP raw packets and
it was used to elicit the meaningful fields of the first data set.

For each TCP connection, the following fields are
extracted :

o  Connection identifier: each connection is defined
by four fields, initiator address, initiator port, receiver
address and receiver port. Thus, these four fields are
included in the profile first in order to identify each
connection,

e Known port vulnerabilities: many network
intrusions attack using various types of port vulnerabilities.
There are fields to indicate whether an initiator port or a
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receiver port potentially holds these known vulnerabilities.

¢ 3-way handshaking: TCP protocol uses 3-way
handshaking for a reliable communication. When some
network intrusions attack, they often violate the 3-way
handshaking rule. Thus, there are fields to check the
occurrences of 3-way handshaking errors.

o  Traffic intensity: network activities can be observed
by measuring the intensity over one connection. For
example, number of packets and number of kilobytes for
one specific connection can describe the normal network
activity of that connection.

Thus, in total, self profile fields have 35 different fields for

the first data set and 41 different fields for the second data set.

4. First Stage — Negative Selection Algorithm

Out of three evolutionary stages of the artificial immune
system, the first stage, negative selection, is investigated and
its experiment results are briefly reported in this section.

As the first step of the human immune system’s detection
mechanism, when a new antibody is generated, the gene
segments of different gene libraries are randomly selected
and concatenated in a random order. The main idea of this
gene expression mechanism is that a vast number of new
antibodies can be generated from new combinations of gene
segments in the gene libraries. However, this mechanism
introduces a critical problem. The new antibody can bind not
only to harmful antigens but also to essential self cells. To
prevent such serious damage, the human immune system
employs negative selection. This process eliminates
immature antibodies, which bind to self cells passing by the
thymus and the bone marrow. Therefore, the negative
selection stage of the human immune system is important to
assure that the generated antibodies do not attack self cells.

In addition to this role of negative selection in a human
immune system, which is to eliminate harmful antibodies,
Forrest et al [3], [9] claimed that it shows some other
important features, which can help us to devise a more
effective anomaly detection algorithm. They proposed and
used a negative selection algorithm for various anomaly
detection problems. This algorithm consisted of three phases:
defining self, generating detectors and monitoring the
occurrence of anomalies. In the first phase, it defines ‘self” in
the same way that other anomaly detection approaches
establish the normal behaviour patterns of a monitored
system. In other words, it regards the profiled normal patterns
as ‘self” patterns. In the second phase, it generates a number
of random pattemns that are compared to each self pattern
defined in the first phase. If any randomly generated pattern
matches a self pattern, this pattern fails to become a detector
and thus it is removed. Otherwise, it becomes a ‘detector’
pattern and monitors subsequent profiled patterns of the
monitored system. During the monitoring stage, if a
‘detector’ pattern matches any newly profiled pattern, it is
then considered that new anomaly must have occurred in the
monitored system.

D’haeseleer, Forrest and Helman [1} showed that this
algorithm has several advantages of negative selection as a
novel distributed anomaly detection approach. One of the
formidable features is that this novel approach does not
define specific anomalies to be detected and thus it does not
require the prior knowledge of anomalies. This feature allows
it to be able to detect previously unseen anomalies.

However, the current negative selection algorithms show
several drawbacks. The most significant problem is the
excessive computational time caused by the random-
generation approach to building valid detectors. This results
in the exponential growth of computational effort with the
size of self patterns [1]. Moreover, it is very difficult to know
whether the number of generated detectors is large enough
that can satisfy the acceptable detection failure probability.
D’haeseleer derived a formula presenting an appropriate
number of detectors when an acceptable failure probability is
given and claimed that the derived formula allows the
negative selection algorithm to tune its detection accuracy
against the cost of generating and storing detectors. This
work has been accomplished under some unrealistic
assumptions: it does not take into account false positive error
and dependence between self patterns. Furthermore, he only
considered binary patterns and a simple r-contiguous bit
matching rule. Nevertheless, it is not easy to estimate the
appropriate number of detectors when the negative selection
algorithm employs numerical pattens and a more
sophisticated matching rule. This difficulty may force the
negative selection algorithm to adopt an arbitrary number of
detectors and this may cause an unexpectedly low detection
accuracy or the inefficient computation by generating more
than is needed.

4.1 Experiment Design

These problems are exemplified through a series of
experiments that apply a negative selection algorithm on the
first data set. The negative selection algorithm used in these
experiments mainly followed the implementation details
which are used in [3]. However, there are several things that
are different from Forrest’s implementation details. In the
encoding of detectors, each gene of detector has an alphabet
of cardinality 10 with values from ‘0’ to ‘9" and the allele of
this gene indicates the ‘cluster number’ of corresponding
field of profiles. As described in the previous section, the
profile built from the first data set has 35 fields and this
number determines the total number of corresponding genes
in the detectors. From these 33 fields, the values of 28 fields
are continuous and the values of the other 7 fields are discrete.
Specifically, the continuous values of 28 fields show a wide
range of values. In order to handle this various and broad
range of values, an overall range of real values for each field
is sorted. Then, this range is discretised into a predefined
number of clusters. The lower bound and higher bound of
each cluster are determined by ensuring that each cluster
contains the same number of records. This modification is
necessary in order to save the length of encoded detector.
Furthermore, our implementation of measuring the similarity
between a generated detector and a self profile is operated at
the phenotype level while Forrest’s is performed at the
genotype level,

Other implementation details have been kept the same
as Forrest’s [3]. For example, the same matching function,
the r-continuous matching function for measuring the
similarity is used. Its matching threshold is defined as 9. In
order to define this number, the formula to approximate the
appropriate number of detectors when a false negative error
is fixed {1], [3] is used. It was shown that the longer
matching threshold drives the creation of more general
detectors, but it also causes a larger number of random
detector generation trials, which need to avoid the matching a
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self profile [1], [3]. Thus, we can derive an approximate
appropriate matching threshold number by varying the
expected false negative error and random detector generation
trial number. Even though this formula is clearly useful to
predict the appropriate number of detectors and its generation
number, its predicted number showed how infeasible this
approach is for applying it on a more complicated search
space. For instance, when the expected false negative error
rate is fixed as 20%, its predicted the detector generation trial
number is 51 and the appropriate number of generated
detectors is 21935 for the matching threshold is 3. Similarly,
when we define the matching threshold is 4, it predicted 535
for the former and 955 for the latter. None of these cases
seem to provide any feasible test case in terms of computing
time. In addition, it was observed that when we fixed the
matching threshold number as four and ran the system, the
system could not manage to generate any single valid
detector after one day. Thus, we generated valid detectors by
setting the matching threshold number that allowed a system
to generate a valid detector in a reasonable time.

4.2 Experiment Result

It was observed that the average time of successful detector
generation took about 70sec CPU time and the average
number of trails to generate a valid detector was 2.6 when a
matching threshold was nine. Even though this number gave
reasonable computing time to generate a valid detector set,
very poor detection accuracy by generated detectors was
shown. The maximum 1000 valid detectors were generated
and the detection accuracy was measured per every 100
detectors. The observed detection accuracy was less than
20% for four different intrusion data sets and one artificially
generated random test set. This result was gained as the
average of five runs.

In contrast to the promising results shown in Hofmeyr’s
negative selection algorithm for network intrusion detection
[4], the experiment result of this research raises doubt
whether this algorithm should be used for network intrusion
detection. These contradictory findings can be explained by
the fact that Hofmeyr’s encouraging result originated from
the adoption of limited profile features which a negative
selection algorithm can handle, while the experiment of this
research used the more complicated but more realistic profile
features that a negative selection algorithm struggles to solve.
More importantly, Forrest [3], [9] and Hofmeyer [4] view
that the network intrusion detection of artificial immune
system is achieved mainly by the sole function of negative
selection stage than the co-ordination of three different
evolutionary stages. This is somewhat different from our
view.

Consequently, the initial results of our experiments
motivated us to re-define the real role of negative selection
stage within an overall network-based IDS and design a more
applicable negative selection algorithm, which following a
newly defined role. As much of the other immunology
literature addresses [10], the antigen detection powers of
human antibodies rise from the evolution of antibodies via a
clonal selection stage. While Forrest et al’s negative selection
algorithm allows it to be an invaluable anomaly detector, its
infeasibility 1s also caused from allocating a rather
overambitious task to it. To be more precise, the job of a

negative selection stage should be restricted to tackle a more
modest task which is closer to the role of negative selection
of human immune system. That is simply filtering the
harmful antibodies rather than generating competent ones.

5. Conclusion and Future Work

The novel artificial immune system presented in this paper
is designed to overcome the weaknesses of conventional
network-based IDS’s. This system combines the three
evolutionary stages: gene library evolution, negative
selection and clonal selection into a single methodology.
These three processes are co-ordinated across a network to
satisfy the three goals for designing effective IDS's: being
distributed, self-organising and lightweight. Analysis of the
characteristics of this unified evolutionary approach show
that, unlike existing approaches, the proposed artificial
immune model does satisfy the requirements of network-
based IDS’s. Consequently, algorithms based on this model
show considerable promise for future IDS’s.

As the first attempt of this effort, the negative selection
stage was implemented and experiments showed its
infeasibility for its application to the essential profiling fields
of real network data. This result directs this research to re-
define the role of negative selection algorithm within the
overall artificial immune system framework. For the future
work, the intrusion detection mechanism of clonal selection
stage will be investigated and the clear understanding of task
of clonal selection stage will help us to comprehend the
distinct job of negative selection stage.

The contributions of this work will provide an applicable
methodology for designing an artificial immune system to be
able to perform network intrusion in a truly distributed, self-
organising and lightweight way.
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