• Title/Summary/Keyword: artificial force

Search Result 384, Processing Time 0.029 seconds

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Development of In process Condition Monitoring System on Turning Process using Artificial Neural Network. (신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process, by using Artificial Neural Network. In order to sense the state of cutting tool. the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper. It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network. The proposed monitoring system shows a good recogniton rate for the different cutting conditions.

  • PDF

Depth Controller Design for Submerged Body Moving near Free Surface Based on Adaptive Control (적응제어기법을 이용한 수면근처에서 운항하는 몰수체의 심도제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan;Yoon, Hyeon Kyu;Kim, Su Yong;Cho, Hyeonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.270-282
    • /
    • 2015
  • A submerged body moving near the free surface needs to maintain its attitude and position to accomplish missions. It is necessary to validate the performance of a designed controller before a sea trial. The hydrodynamic coefficients of maneuvering are generally obtained by experiments or computational fluid dynamics, but these coefficients have uncertainty. Environmental loads such as the wave exciting force and suction force act on the submerged body when it moves near the free surface. Thus, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, the six-degree-of-freedom equations of motions for the submerged body are constructed. The suction force is calculated using the double Rankine body method. An adaptive control method based on an artificial neural network and proportional-integral-derivative control are used for the depth controller. Simulations are performed under various depth and speed conditions, and the results show the effectiveness of the designed controller.

A Study on the Air Temperature Changes and Regional Characteristics in South Korea (우리나라 지역별 기온변화 특성)

  • Kim, Tae Ryong
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.131-167
    • /
    • 2009
  • Global warming is regarded as one of the most critical issues that should be taken care of by the entire global community as it threatens the survival of mankind. South Korea, in particular, undergoes faster warming than the average rate of global warming. South Korea has revealed various warming rates and trends being surrounded by sea on three sides and having complex terrains dominated by mountains. The rates vary according to regions and their urbanization and industrialization. Differences also derive from seasons and weather elements. Changes to the highest, mean, and lowest temperature are also different according to the characteristics of regions and observatories, which is more apparent where the force of artificial weather applies. In an urban area, temperature gaps tend to decrease as the lowest temperature rises more than the highest temperature. Meanwhile, temperature gaps grow further in a coastal or country region where the force of artificial weather is small and the force of natural weather prevails. In this study, the investigator analyzed the changes to the weather elements of 11 observation spots that had gone through no changes in terms of observation environment since 1961, were consecutively observed, and had the quality of their observation data monitored on an ongoing basis. Using the results, I tried to identify natural and artificial causes affecting certain spots. Located on the east coast of the Asian Continent, South Korea sees weather changing very dynamically. Having huge influences on our weather, China has achieved very rapid industrialization for the last 30 years and produced more and more greenhouse gases and air pollution due to large-size development projects. All those phenomena affect our weather system in significant ways. Global warming continues due to various reasons with regional change differences. Thus the analysis results of the study will hopefully serve as basic data of weather statistics with which to set up countermeasures against climate changes.

  • PDF

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

Force and Pose control for Anthropomorphic Robotic Hand with Redundancy (여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어)

  • Yee, Gun Kyu;Kim, Yong Bum;Kim, Anna;Kang, Gitae;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

An Artificial Intelligence Research for Maritime Targets Identification based on ISAR Images (ISAR 영상 기반 해상표적 식별을 위한 인공지능 연구)

  • Kim, Kitae;Lim, Yojoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Artificial intelligence is driving the Fourth Industrial Revolution and is in the spotlight as a general-purpose technology. As the data collection from the battlefield increases rapidly, the need to us artificial intelligence is increasing in the military, but it is still in its early stages. In order to identify maritime targets, Republic of Korea navy acquires images by ISAR(Inverse Synthetic Aperture Radar) of maritime patrol aircraft, and humans make out them. The radar image is displayed by synthesizing signals reflected from the target after radiating radar waves. In addition, day/night and all-weather observations are possible. In this study, an artificial intelligence is used to identify maritime targets based on radar images. Data of radar images of 24 maritime targets in Republic of Korea and North Korea acquired by ISAR were pre-processed, and an artificial intelligence algorithm(ResNet-50) was applied. The accuracy of maritime targets identification showed about 99%. Out of the 81 warship types, 75 types took less than 5 seconds, and 6 types took 15 to 163 seconds.