• Title/Summary/Keyword: artificial compressibility

Search Result 40, Processing Time 0.023 seconds

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim, Jong-Tae;Kim, Yong-Mo;Maeng, Ju-Seong
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

Internal Wave Computations based on a Discontinuity in Dynamic Pressure (동압 계수의 불연속성을 이용한 내면파의 수치해석)

  • 신상묵;김동훈
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

Diagonalized Approximate Factorization Method for 3D Incompressible Viscous Flows (대각행렬화된 근사 인수분해 기법을 이용한 3차원 비압축성 점성 흐름 해석)

  • Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.293-303
    • /
    • 2011
  • An efficient diagonalized approximate factorization algorithm (DAF) is developed for the solution of three-dimensional incompressible viscous flows. The pressure-based, artificial compressibility (AC) method is used for calculating steady incompressible Navier-Stokes equations. The AC form of the governing equations is discretized in space using a second-order-accurate finite volume method. The present DAF method is applied to derive a second-order accurate splitting of the discrete system of equations. The primary objective of this study is to investigate the computational efficiency of the present DAF method. The solutions of the DAF method are evaluated relative to those of well-known four-stage Runge-Kutta (RK4) method for fully developed and developing laminar flows in curved square ducts and a laminar flow in a cavity. While converged solutions obtained by DAF and RK4 methods on the same computational meshes are essentially identical because of employing the same discrete schemes in space, both algorithms shows significant discrepancy in the computing efficiency. The results reveal that the DAF method requires substantially at least two times less computational time than RK4 to solve all applied flow fields. The increase in computational efficiency of the DAF methods is achieved with no increase in computational resources and coding complexity.

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

Laboratorial Study for Mechanical Prosperities of Intermediate Soils (중간토의 역학적 특성에 관한 실험적 연구)

  • 박중배;전몽각
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • The purposes of this study are to investigate the mechanical prospeities of the inter mediate soils through consolidation tests and triaxial compression shear tests. The intermediate soils used in this study are artificial soils which are composed of sea clay, sand and it's crushed component. The relationship between plastic index and mechanical prosperties (permeability and compressibility) is investigated through series of consoli dation tests. Strain hardening phenomenon under shearing is explored based on several overconsideration ratios and strain rates in undrained shear tests. To make a comparative study difference of drain condition and strain rate, drain shear tests are performed with overconsolidation ratio.

  • PDF

A Study on the Comfortability of Wearing Pantyhose (시판 Stocking의 착용에 따른 쾌적성 연구)

  • Sim, Bu-Ja;Park, Hye-Jun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.71-90
    • /
    • 1999
  • This study was conducted to examine the comfortability of wearing pantyhose in summer. To satisfy this purpose. 4 types of pantyhose were chosen from the market: a Mono type(M), a Wooly type(W), and two Support types(Sl, S2), were chosen. After the performances of samples were measured, these were worn by 8 healthy adult women. Under the summer field environment, psychological comfort ability was examined through the 5 steps of SD method. Physiological comfort ability was examined by measuring the body reactions(clothing pressure, skin temperature, total body weight loss, rectal temperature, pulse rates, and blood pressure), under the artificial environment($28.5{\pm}0.5^{\circ}C$, $82{\pm}3%$). The results of this examination were as follows : The order of comfortability which people felt in the field was W>M>S1>S2. The number of items which showed the highest correlation with comfort ability decreased and the correlation was lowered on the whole as time went by. There was positive high correlation between the performances of samples and comfort ability in compressibility, air permeability, water vapor permeability, while a negative high correlation in thickness, weight, compressional resiliency, strain (course) and moisture regain. The mean skin temperature was in the comfort zone, and rectal temperature, pulse rates, blood pressure were mostly in the normal range. Also it was showed that the correlation between the performance of samples and body reactions, except total body weight loss, was low.

  • PDF

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.