• Title/Summary/Keyword: arsenic remediation

Search Result 69, Processing Time 0.04 seconds

Current Status and Technologies for Treating Groundwater Arsenic Pollution in Bangladesh (방글라데시 지하수 내 비소 오염 현황 및 처리기술)

  • Tashdedul, Haque Md;Reyes, Nash Jett DG.;Jeon, Minsu;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.142-154
    • /
    • 2022
  • Arsenic (As) contamination in groundwater is one of the main problems in Bangladesh. As toxicity causes serious human health problems such as edema, skin cancer, bladder cancer, lung cancer, hyperkeratosis, premature birth, and black foot disease. As contamination in groundwater mainly originates from the geological characteristics of the area due to the influence of anthropogenic activities. Since most of the people in Bangladesh rely on tube well for drinking water, it is necessary to investigate the current status of As pollution and identify the treatment technologies that can be used to provide arsenic-free drinking water in water-scarce areas. A total of 92 papers were reviewed in this study to present a complete overview of the recent status of groundwater As contamination in Bangladesh and different low-cost remediation technologies. A method for evaluating the relative feasibility of different treatment technologies was also utilized to determine the most appropriate technologies for groundwater As treatment in Bangladesh. The districts with the highest groundwater As contamination include Brahamanbariya, Tangail, Barisal, Pabna, Patuakhali, Kurigram, Magura, and Faridpur, with concentrations exceeding 0.05 mg/L. Only six districts had relatively low groundwater arsenic concentrations (0.01 mg/L), including Kushtia, Khagrachari, Jessore, Dinajpur, Meherpur, and Munshiganj. There were a number of technologies used for treating As in water, but aerated electrocoagulation, Mg-Fe-based hydrotalcite-like compound, and electro-chemical As remediation (ECAR) reactor were found to be the most feasible treatment methods for As. Overall, the investment, operational, and maintenance costs, availability of materials, and expertise requirements should be considered when selecting the most appropriate treatment method for As in water.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

Microbial Effects on Geochemical Behavior of Arsenic under Aresnic under Aerobic Condition and Their Applicability to Environmental Remediation (호기성환경에서 비소의 지구화학적 거동에 미치는 미생물의 영향 및 오염 복구에의 적용 가능성)

  • Lee, Sang-U;Kim, Gyeong-Ung;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2001
  • The effects on arsenic geochemistry of indigenous microorganisms isolated from an area contaminated with high concentration of arsenic were investigated. Arsenite exerted higher inhibitory effects on the microbes' growth than arsenate. During incubation of the microbes in an arsenate-spiked medium over 24 hours, decrease in microbial growth was observed as arsenate content increased. Arsenate of 150 mM or over apparently inhibited cell growth. However, further incubation for up to 4 days in the high arsenate concentration medium resulted in cell growth, implying that the microorganisms adjusted their biochemical functions to detoxify arsenic and maintain growth. Two types of microbes were observed during 20 hours to reduce arsenate to arsenite in solution through a detoxification mechanism. As well, decrease in the total arsenic content occurred over a 4-day incubation with the same microbes in an arsenate-spiked medium. Therefore it is suggested that microorganisms can influence arsenic speciation in natural settings and this may be applied to efficient bioremediation of arsenic-contaminated sites.

  • PDF

Immobilization and Recycling of Arsenic-Contaminated Fine Soil Cake Produced after Soil Washing Process (토양세척 후 발생하는 비소오염 탈수미세토의 불용화 및 재활용 평가)

  • Oh, Minah;Moon, SoYoung;Hyun, Min;Chae, HeeHoon;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 2012
  • Standardized remediation process for the soil contaminated with arsenic is insufficient due to characteristics of its anion-mobility and speciation changed by Eh-pH of soil. One of the well-known efficient remediation processes is the modified soil washing that particle separation process by only water. However, it is required that the treatment plan for the fine soil what was discharged after modified soil washing. Therefore, this research suggests the treatment plan that the recycling method using arsenic immobilization by FeS-$H_2O_2$. The batch experiments results for the arsenic immobilization showed that the water content was at least 50%, the injection of FeS and $H_2O_2$ (assay-35%) were 8% (w/watdrybase) and 0.2 mL/10 g of fine soil respectively. Arsenic concentration with KSLT was decreased about 95.4%. The results indicated that the mixing of FeS-$H_2O_2$ was highly efficient on the immobilization of As-contaminated soil. The mixing ratio as 13% of bentonite with 3% of cement (at based on 100% of immobilized fine soil) was satisfied with standard of liner for landfill construction.

Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site ((구)장항제련소 주변 부지 매입구역 비소 오염토양에 대한 중성 인산염 토양세척법의 적용가능성 평가)

  • Im, Jinwoo;Kim, Young-Jin;Yang, Kyung;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2014
  • In accordance with the view on remediated soil as a resource, this study assessed the applicability of soil washing with the neutral phosphate for remediation of arsenic (As)-contaminated soil. Three soil samples of different land uses (i.e., rice paddy, upland field and forest land) were collected from the study site, and the aqua regia-extractable As concentrations were 59.2, 30.8 and 53.1 mg/kg, respectively. Among the neutral phosphate reagents, ammonium phosphate showed the highest As washing efficiency. The optimized washing condition was 2-hr washing with 0.5M ammonium phosphate solution (pH 6) and soil to liquid ratio of 1 : 5. The extraction efficiencies of As did not guarantee the residual soil As concentrations to satisfy the Korea soil regulatory level (i.e., Worrisome level) in the three soil samples. To enhance washing efficiency, the As-contaminated soil was submerged in washing solution (1 : 1, w/v) for 24 hr and 1-hr washing with 0.5M ammonium phosphate solution was tested. As extraction efficiencies of 36.1 (rice paddy), 21.4 (upland field) and 26.4% (forest land) were attained, which satisfied the Worrisome level for Region 1 (25 mg/kg of As) in rice paddy, but not in upland field and forest land.

Investigation of Stabilization Effect on Arsenic Contamination Soils using Zerovalent Iron and Industrial by-products (영가철 및 산업폐기물을 활용한 비소오염토양의 안정화 효과조사)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.229-241
    • /
    • 2008
  • In order to investigate stabilization effect on As-contaminated soils treated by zero-valent iron(ZVI) and industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used as treatment materials to reduce As. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. After incubation, all samples showed the reduction of As concentration and it was expected that ZVI and steel refining slag were effective treatment materials to remove As among treatment materials used in batch test. In column tests, columns were made by acrylic with the dimension of diameter=10cm, height=100cm, thickness=1cm and these columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag(mixing ratio=3%). Distilled water was discharged into the columns with the velocity of 1 pore-volume/day. During test, pH, EC, Eh and As concentration were measured in the regular term(1 pore-volume). As a result, ZVI and steel refining slag were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and steel refining slag are used as treatment materials in As-contaminated soils, it is expected that the As concentration in soils is reduced effectively.

  • PDF

Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel (아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발)

  • Kim, Hye-Young;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.

Human Risk Assessment of Arsenic and Heavy Metal Contamination and Estimation of Remediation Concentration within Abandoned Metal Mine Area (폐금속 광산지역 비소 및 중금속 오염에 대한 인체위해성평가 및 복원농도 설정)

  • Lee, Sang-Woo;Kim, Jeong-Jin;Park, Mi Jeong;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.309-323
    • /
    • 2015
  • This study was initiated to propose the method for human risk assessment suitable to metal mine area. Using a variety of exposure parameters extracted from the investigation of abandoned metal mines, the proposed method was applied to assess the risk of As and heavy metal contamination for inhabitants (male and female adults and child) within an abandoned mine area. Based on the results of risk assessment, in addition, target remediation concentrations of each media (soil, groundwater, and surface water) were estimated. The results indicate that total carcinogenic risk (TCR) and hazard index (HI) representing carcinogenic and non-carcinogenic risks, respectively, were calculated to exceed the tolerable levels (1.00E-6 and 1) with regard to two exposure pathways (groundwater and crop intakes) and As. Thus, the human risk of study area was evaluated to be significant. Based on the target risk (TR) for carcinogens, the remediation concentrations of soil were computed to be 6.83~6.85 mg/kg and 18.41~18.46 mg/kg for As and Pb, respectively. In terms of target hazard index (THI) for non-carcinogens, the remediation concentrations of soil were calculated to be 17.38 mg/kg for Cu and 9.13 mg/kg for As.

Environmental Assessment and Decision of Remediation Scope for Arsenic Contaminated Farmland Soils and River Deposits Around Goro Abandoned Mine, Korea (토양 정밀 조사에 의한 고로폐광산 주변 비소오염 토양 및 하천퇴적토의 오염도 평가 및 오염 토양 복원 규모 설정)

  • 차종철;이정산;이민희
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.457-467
    • /
    • 2003
  • Soil Precise Investigation(SPI) for river deposits and farmland soils around Goro abandoned Zn-mine, Korea was performed to assess the pollution level of heavy metals(As. Pb, Cd, Cu) and to estimate the remediation volume for contaminated soils. Total investigation area was about 950000 $m^2$, which was divided into each section of 1500 $m^2$ corresponding to one sampling site and 545 samples for surface soil(0-10cm in depth) and 192 samples for deep soil(10-30cm in depth) from the investigation area were collected for analysis. Concentrations of Cu, Cd, Pb at all sample sites were shown to be lower than Soil Pollution Warning Limit(SPWL). For arsenic concentration, in surface soils, 20.5% of sample sites(104 sites) were over SPWL(6mg/kg) and 6.7%(34 sites) were over Soil Pollution Counterplan Limit(SPCL: 15mg/kg) suggesting that surface soils were broadly contaminated by As. For deep soils, 10.4% of sample sites(18 sites) were over SPWL and 0.6%(1 site) were over SPCL. Four pollution grades for sample locations were prescribed by the Law of Soil Environmental Preservation and Pollution Index(PI) for each soil sample was decided according to pollution grades(over 15.0 mg/kg, 6.00-15.00 mg/kg, 2.40-6.00 mg/kg, 1.23-6.00 mg/kg). The pollution contour map around Goro mine based on PI results was finally created to calculate the contaminated area and the remediation volume for contaminated soils. Remediation area with over SPWL concentration was about 0.3% of total area between Goro mine and a projected storage dam and 0.9% of total area was over 40% of SPWL. If the remediation target concentration was determined to over background level concentration, 1.1% of total area should be treated for remediation. Total soil volume to be treated for remediation was estimated on the assumption that the thickness of contaminated soil was 30cm. Soil volume to be remediated based on the excess of SPWL was estimated at 79,200$m^3$, soil volume exceeding 40% of SPWL was about 233,700 $m^3$, and soil volume exceeding the background level(1.23 mg/kg) was 290,760 TEX>$m^3$.

A Study on Adsorption and Desorption of As(III) and As(V) on Soil using a Column (칼럼을 이용한 토양에서 As(III)와 As(V)의 흡착 및 탈착에 관한 연구)

  • Kim, Myoung-Jin;Kim, Tae-Suk
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • Adsorption is a major process causing the accumulation of arsenic onto soil. Therefore, further understanding of the adsorption/desorption characteristics of arsenic species on soil is essential for predicting their fate and preparing appropriate remediation strategy to remove arsenic from soil. In this study, the column adsorption/desorption experiment has been performed with As(III) and As(V) on soil. Experiment with As(III) was conducted under reducing condition, whereas that with As(V) was under oxidizing condition. Most of As(III) was remained on the oxidation state during the experiment. The results showed that the adsorption/desorption rate of As(III) was higher than that of As(V). Adsorption and desorption of arsenic species were not completely reversible in the column experiment. It was also found that As(V) in the column experiment was adsorbed more rapidly on soil than in the batch experiment.