A Study on Adsorption and Desorption of As(III) and As(V) on Soil using a Column

칼럼을 이용한 토양에서 As(III)와 As(V)의 흡착 및 탈착에 관한 연구

  • Kim, Myoung-Jin (Division of Civil and Environmental Engineering, Korea Maritime University) ;
  • Kim, Tae-Suk (Division of Civil and Environmental Engineering, Korea Maritime University)
  • 김명진 (한국해양대학교 토목환경공학과) ;
  • 김태석 (한국해양대학교 토목환경공학과)
  • Published : 2008.02.29

Abstract

Adsorption is a major process causing the accumulation of arsenic onto soil. Therefore, further understanding of the adsorption/desorption characteristics of arsenic species on soil is essential for predicting their fate and preparing appropriate remediation strategy to remove arsenic from soil. In this study, the column adsorption/desorption experiment has been performed with As(III) and As(V) on soil. Experiment with As(III) was conducted under reducing condition, whereas that with As(V) was under oxidizing condition. Most of As(III) was remained on the oxidation state during the experiment. The results showed that the adsorption/desorption rate of As(III) was higher than that of As(V). Adsorption and desorption of arsenic species were not completely reversible in the column experiment. It was also found that As(V) in the column experiment was adsorbed more rapidly on soil than in the batch experiment.

흡착은 비소가 토양에 축적되는 주요 과정이다. 그러므로 토양에서 비소종의 흡착 및 탈착 특성을 이해하는 것은 비소종의 거동을 예측하고 토양으로부터 비소를 제거하는 적절한 정화방법을 수립하기 위해 필수적이다. 본 연구에서는 칼럼을 이용하여 토양에서 As(III)와 As(V)의 흡착 및 탈착실험을 수행하였다. As(III)에 대한 실험은 환원환경에서, 그리고 As(V)에 대한 실험은 산화환경에서 실시했다. 실험이 진행되는 동안 대부분의 As(III)는 그 산화상태를 유지하였다. As(III)의 흡착 및 탈착속도는 As(V)보다 빨랐다. 칼럼실험에서 비소종의 흡착 및 탈착반응은 완전히 가역적은 아니었다. 또한 As(V)는 회분식실험에서보다 칼럼실험에서 더 빠르게 토양에 흡착되었다.

Keywords

References

  1. 김명진, 안규홍, 정예진, 2003, 토양에서의 비소흡착: 반응속도 및 흡착평형, 대한환경공학회지, 25(4), 407-414
  2. Allen, H.E., Chen, Y.T., Li, Y., Huang, C.P., and Sanders, P.F., 1995, Soil partition coefficients for Cd by column desorption and comparison to batch adsorption measurements, Environ. Sci. Technol., 29, 1887-1891 https://doi.org/10.1021/es00008a004
  3. Chiu, V.Q. and Hering, J.G., 2000, Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species, Environ. Sci. Technol., 34, 2029-2034 https://doi.org/10.1021/es990788p
  4. Darland, J.E. and Inskeep, W.P., 1997, Effects of pore water velocity on the transport of arsenate, Environ. Sci. Technol., 31, 704-709 https://doi.org/10.1021/es960247p
  5. Davis, J.A. and Kent, D.B., 1990, Surface complexation modeling in aqueous geochemistry, in Hochella, M.F., and White A.F., eds., Mineral-Water Interface Geochemistry, Mineralogical Society of America,Washington, D.C., p. 177-248
  6. Elkhatib, E.A., Bennett, O.L., and Wright, R.J., 1984, Kinetics of arsenite sorption in soils, Soil Sci. Soc. Am. J., 48, 758-762 https://doi.org/10.2136/sssaj1984.03615995004800040012x
  7. Fuller, C.C., Davis, J.A., and Waychunas, G.A., 1993, Surfacechemistry of ferrihydrite. 2. Kinetics of arsenate adsorption and coprecipitation, Geochim. Cosmochim. Acta, 57, 2271-2282 https://doi.org/10.1016/0016-7037(93)90568-H
  8. Goldberg, S., 2002, Competitive adsorption of arsenate and arsenite on oxides and clay minerals, Soil Sci. Soc. Am. J., 66, 413-421 https://doi.org/10.2136/sssaj2002.0413
  9. Grafe, M., Eick, M.J., and Grossl, P.R., 2001, Adsorption of arsenate(V) and arsenite(III) on goethite in the presence and absence of dissolved organic carbon, Soil Sci. Soc. Am. J., 65, 1680-1687 https://doi.org/10.2136/sssaj2001.1680
  10. Langner, H.W. and Inskeep, W.P., 2000, Microbial reduction of arsenate in the presence of ferrihydrite, Environ. Sci. Technol., 34, 3131-3136 https://doi.org/10.1021/es991414z
  11. Livesey, N.T. and Huang, P.M., 1981, Adsorption of arsenate by soils and its relation to selected chemical properties and anions, Soil Science, 131, 88-94 https://doi.org/10.1097/00010694-198102000-00004
  12. Manning, B.A., Fendorf, S., Bostick, B., and Suarez, D.L., 2002, Arsenic(III) oxidation and As(V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol., 36, 976-981 https://doi.org/10.1021/es0110170
  13. Manning, B.A. and Goldberg, S., 1997, Arsenic(III) and arsenic(V) adsorption on three California soils, Soil Science, 162, 886-895 https://doi.org/10.1097/00010694-199712000-00004
  14. O'Reilly, S.E., Strawn, D.G., and Sparks, D.L., 2001, Residence time effects on arsenate adsorption/desorption mechanism on goethite, Soil Sci. Soc. Am. J., 65, 67-77 https://doi.org/10.2136/sssaj2001.65167x
  15. Pierce, M.L. and Moore, C.M., 1982, Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res., 16, 1247-1253 https://doi.org/10.1016/0043-1354(82)90143-9
  16. Puls, R.W. and Powell, R.M., 1992, Transport of inorganic colloids through natural aquifer material: Implications for contaminant transport, Environ. Sci. Technol., 26, 614-621 https://doi.org/10.1021/es00027a027
  17. Raven, L., Jain, A., and Loeppert, R., 1998, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344-349 https://doi.org/10.1021/es970421p
  18. Stollenwerk, K.G., 2003, Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption in Welch, A.H. and Stollenwerk, K.G., eds., Arsenic in Groundwater, Kluwer Academic Publishers, Boston/Dordrecht/London, p. 67-100
  19. Sumner, M.E. and Miller, W.P., 1996, Cation exchange capacity and exchange coefficients, Methods of Soil Analysis. Part3. Chemical Methods, Soil Science Society of America, Inc. p. 1201-1229
  20. Zelazny, L.W., He, L., and Vanwormhoudt, A., 1996, Charge analysis of soils and anion exchange, Methods of Soil Analysis. Part3. Chemical Methods, Soil Science Society of America, Inc., p. 1244-1248