Browse > Article
http://dx.doi.org/10.17663/JWR.2022.24.2.142

Current Status and Technologies for Treating Groundwater Arsenic Pollution in Bangladesh  

Tashdedul, Haque Md (Department of Civil and Environmental Engineering, Kongju National University)
Reyes, Nash Jett DG. (Department of Civil and Environmental Engineering, Kongju National University)
Jeon, Minsu (Department of Civil and Environmental Engineering, Kongju National University)
Kim, Lee-Hyung (Department of Civil and Environmental Engineering, Kongju National University)
Publication Information
Journal of Wetlands Research / v.24, no.2, 2022 , pp. 142-154 More about this Journal
Abstract
Arsenic (As) contamination in groundwater is one of the main problems in Bangladesh. As toxicity causes serious human health problems such as edema, skin cancer, bladder cancer, lung cancer, hyperkeratosis, premature birth, and black foot disease. As contamination in groundwater mainly originates from the geological characteristics of the area due to the influence of anthropogenic activities. Since most of the people in Bangladesh rely on tube well for drinking water, it is necessary to investigate the current status of As pollution and identify the treatment technologies that can be used to provide arsenic-free drinking water in water-scarce areas. A total of 92 papers were reviewed in this study to present a complete overview of the recent status of groundwater As contamination in Bangladesh and different low-cost remediation technologies. A method for evaluating the relative feasibility of different treatment technologies was also utilized to determine the most appropriate technologies for groundwater As treatment in Bangladesh. The districts with the highest groundwater As contamination include Brahamanbariya, Tangail, Barisal, Pabna, Patuakhali, Kurigram, Magura, and Faridpur, with concentrations exceeding 0.05 mg/L. Only six districts had relatively low groundwater arsenic concentrations (0.01 mg/L), including Kushtia, Khagrachari, Jessore, Dinajpur, Meherpur, and Munshiganj. There were a number of technologies used for treating As in water, but aerated electrocoagulation, Mg-Fe-based hydrotalcite-like compound, and electro-chemical As remediation (ECAR) reactor were found to be the most feasible treatment methods for As. Overall, the investment, operational, and maintenance costs, availability of materials, and expertise requirements should be considered when selecting the most appropriate treatment method for As in water.
Keywords
Arsenic; Bangladesh; groundwater; water treatment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, J., Wang, S., Zhang, S., Yang, X., Huang, Z., Wang, C., Wei, Q., Zhang, G., Xiao, J., Jiang, F., Chang, J., Xiang, X., & Chang, J. (2015). Arsenic pollution and its treatment in Yangzonghai Lake in China: In situ remediation. Ecotoxicology and Environmental Safety, 122, 178-185. DOI: 10.1016/j.ecoenv.2015.07.032   DOI
2 Chowdhury, M. A., Walji, N., Mahmud, M., & MacDonald, B. D. (2017). Based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in Bangladesh. Micromachines, 8(3), 71.   DOI
3 Crabbe, H., Fletcher, T., Close, R., Watts, M. J., Ander, E. L., Smedley, P. L., & Leonardi, G. S. (2017). Hazard ranking method for populations exposed to arsenic in private water supplies: relation to bedrock geology. International journal of environmental research and public health, 14(12), 1490.   DOI
4 Cui, J., Jing, C., Che, D., Zhang, J., & Duan, S. (2015). Groundwater arsenic removal by coagulation using ferric (III) sulfate and polyferric sulfate: a comparative and mechanistic study. Journal of Environmental Sciences, 32, 42-53. DOI: 10.1016/j.jes.2014.10.020   DOI
5 Dhar, P. K., Naznin, A., & Ara, M. H. (2021). Health risks assessment of heavy metal contamination in drinking water collected from different educational institutions of Khulna city corporation, Bangladesh.
6 Feistel, U., Otter, P., Kunz, S., Grischek, T., & Feller, J. (2016). Field tests of a small pilot plant for the removal of arsenic in groundwater using coagulation and filtering. Journal of Water Process Engineering, 14, 77-85.   DOI
7 Chakraborti, D., Rahman, M. M., Das, B., Murrill, M., Dey, S., Mukherjee, S. C. ... & Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Research, 44(19), 5789-5802.   DOI
8 Hose, G. C., Symington, K., Lott, M. J., & Lategan, M. J. (2016). The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environmental Science and Pollution Research, 23(18), 18704-18713.   DOI
9 Hossain, M.S., Khan, M.S.H., Abdullah, R., and Chowdhury, K.R., 2020a. Tectonic development of the Bengal Basin in relation to the Fold-Thrust Belt to the East and to the North. In Biswal, T.K., Ray,
10 Hossain, M. S., Xiao, W., Khan, M. S. H., Chowdhury, K. R., & Ao, S. (2020). Geodynamic model and tectonic-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 16(2), 445-458.   DOI
11 Hossain, S., Hosono, T., Ide, K., Matsunaga, M., & Shimada, J. (2016). Redox processes and occurrence of arsenic in a volcanic aquifer system of Kumamoto Area, Japan. Environmental Earth Sciences, 75(9), 1-19.   DOI
12 Hossain, S., Hosono, T., Yang, H., & Shimada, J. (2016). Geochemical processes controlling fluoride enrichment in groundwater at the western part of Kumamoto area, Japan. Water, Air, & Soil Pollution, 227(10), 1-14.   DOI
13 Houben, G. J., Kaufhold, S., Dietel, J., Rohm, H., Groger-Trampe, J., & Sander, J. (2019). Investigation of the source of acidification in an aquifer in Northern Germany. Environmental Earth Sciences, 78(3), 1-12.   DOI
14 Hrudey, S. E., & Hrudey, E. J. (2019). Common themes contributing to recent drinking water disease outbreaks in affluent nations. Water Supply, 19(6), 1767-1777.   DOI
15 Human Rights Watch (2016) Nepotism and neglect: The failing response to arsenic in the drinking water of Bangladesh's rural poor. New York: Human Rights Watch. https://www.hrw.org/report/2016/04/06/nepotismand-neglect/failing-response-arsenic-drinking-water-bangladeshs-rural.
16 Hartland, A., Larsen, J. R., Andersen, M. S., Baalousha, M., & O'Carroll, D. (2015). Association of arsenic and phosphorus with iron nanoparticles between streams and aquifers: implications for arsenic mobility. Environmental science & technology, 49(24), 14101-14109.   DOI
17 Yasmin, G., Islam, D., Islam, M. T., & Adham, A. K. M. (2019). Evaluation of groundwater quality for irrigation and drinking purposes in Barishal district of Bangladesh. Fundamental and Applied Agriculture, 4(1), 632-641.   DOI
18 Callegari, A., Ferronato, N., Rada, E. C., Capodaglio, A. G., & Torretta, V. (2018). Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Environmental Science and Pollution Research, 25(26), 26135-26143.   DOI
19 He, X., Li, P., Ji, Y., Wang, Y., Su, Z., & Elumalai, V. (2020). Groundwater arsenic, fluoride, associated arsenicosis, and fluorosis in China: occurrence, distribution and management. Exposure and health, 12(3), 355-368.   DOI
20 Rahman, A., & Rahaman, H. (2018). Contamination of arsenic, manganese and coliform bacteria in groundwater at Kushtia District, Bangladesh: human health vulnerabilities. Journal of water and health, 16(5), 782-795.   DOI
21 Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., ... & Ahmed, M. F. (2005). Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. Comptes Rendus Geoscience, 337(1-2), 285-296.   DOI
22 Hasan, M. M., Ahmed, K. M., Sultana, S., Rahman, M. S., Ghosh, S. K., & Ravenscroft, P. (2018). Investigations on groundwater buffering in Khulna-Satkhira coastal belt using managed aquifer recharge. In Groundwater of South Asia (pp. 453-462). Springer, Singapore.
23 Hasanuzzaman, M., Song, X., Han, D., Zhang, Y., & Hussain, S. (2017). Prediction of groundwater dynamics for sustainable water resource management in Bogra District, Northwest Bangladesh. Water, 9(4), 238.   DOI
24 Kato, M., Kumasaka, M. Y., Ohnuma, S., Furuta, A., Kato, Y., Shekhar, H. U., Kojima, M., Koike, Y., Nguyen Dinh Thang, N. D., Ohgami, N., Ly, T. B., Xiaofang Jia, X., Yetti, H., Naito, H., Ichihara, G., & Yajima, I. (2013). Comparison of barium and arsenic concentrations in well drinking water and in human body samples and a novel remediation system for these elements in well drinking water. PloS One, 8(6). DOI: 10.1371/journal.pone.0066681   DOI
25 Haugen, E. A., Jurgens, B. C., Arroyo-Lopez, J. A., & Bennett, G. L. (2021). Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California. Science of the Total Environment, 771, 145223.   DOI
26 He, J., Bardelli, F., Gehin, A., Silvester, E., & Charlet, L. (2016). Novel chitosan goethite bio-nano composite beads for arsenic remediation. Water Research, 101, 1-9. DOI: 10.1016/j.watres.2016.05.032.   DOI
27 Hoinkis, J., Kurz, E. C., Hellriegel, U., Luong, T. V., & Bundschuh, J. (2019). Sustainable small-scale, membrane-based arsenic remediation for developing countries. In Environmental Arsenic in a Changing World (pp. 623-626). CRC Press
28 Islam, S. M., Majumder, R. K., Uddin, M. J., Khalil, M., & Ferdous Alam, M. (2017). Hydrochemical characteristics and quality assessment of groundwater in Patuakhali district, southern coastal region of Bangladesh. Exposure and health, 9(1), 43-60.   DOI
29 Jiang, J. Q., Ashekuzzaman, S. M., Jiang, A., Sharifuzzaman, S. M., & Chowdhury, S. R. (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. International journal of environmental research and public health, 10(1), 18-46.   DOI
30 Alhumairi, A. M., Hamouda, R. A., & Saddiq, A. A. (2021). Bio-remediation of Most Contaminated Sites by Heavy Metals and Hydrocarbons In Dhiba Port Kingdom of Saudi Arabia Using Chlorella Vulgaris.
31 Visoottiviseth, P., & Ahmed, F. (2008). Technology for remediation and disposal of arsenic. In D. M. Whitacre, H. Garelick, & H. Jones (Eds.), Reviews of Environmental Contamination Volume, 197 (pp. 77-128). New York, NY: Springer.
32 Biswal, T.K., Ray, S.K., and Grasemann, B. (eds), Structural Geometry of Mobile Belts of the Indian Subcontinent. Cham: Springer Nature Switzerland AG, pp. 91-109.
33 Wang, Y., Li, J., Ma, T., Xie, X., Deng, Y., & Gan, Y. (2021). The genes of geogenic celandontaminated groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24), 2895-2933   DOI
34 Figoli, A., Hoinkis, J. and Bundschuh, J. (Eds.) (2016). Membrane technologies for water treatment: Removal of toxic trace elements with emphasis on arsenic, fluoride and uranium. Boca Raton: CRC Press. (Sustainable water developments, Volume 1)
35 Kabir, M. M., Hossain, N., Islam, A. R. M. T., Akter, S., Fatema, K. J., Hilary, L. N. ... & Choudhury, T. R. (2021). Characterization of groundwater hydrogeochemistry, quality, and associated health hazards to the residents of southwestern Bangladesh. Environmental Science and Pollution Research, 28(48), 68745-68761.   DOI
36 Kim, D. H., Moon, S. H., Ko, K. S., & Kim, S. (2020). Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea. Economic and Environmental Geology, 53(6), 655-666.   DOI
37 Kim, D. M., Kwon, O. H., Oh, Y. S., & Lee, J. S. (2021). Interpreting complex geochemistry of groundwater in a coastal paddy field near a mine using isotopic signatures of sulfate and water. Environmental Geochemistry and Health, 43(10), 4105-4122.   DOI
38 Lee, J. Y., Cha, J., & Raza, M. (2021). Groundwater development, use, and its quality in Korea: tasks for sustainable use. Water Policy, 23(6), 1375-1387   DOI
39 Lee, J. Y., Chaimongkalayon, N., Lim, J., Ha, H. Y., & Moon, S. H. (2016). Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization. Water Science and Technology, 73(12), 3064-3071. DOI: 10.2166/wst.2016.135.   DOI
40 Hasan, M. M., Shafiquzzaman, M., Nakajima, J., & Bari, Q. H. (2012). Application of a simple arsenic removal filter in a rural area of Bangladesh. Water Science and Technology: Water Supply, 12(5), 658-665. DOI: 10.2166/ws.2012.039   DOI
41 Mani, P., Kim, Y., Lakhera, S. K., Neppolian, B., & Choi, H. (2021). Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon. Chemosphere, 277, 130225   DOI
42 Saha, N., Bodrud-Doza, M., Islam, A. R. M., Begum, B. A., & Rahman, M. S. (2020). Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater. Environmental Earth Sciences, 79(20), 1-18.   DOI
43 Rahman, M. S., Reza, A. S., Ahsan, A., & Siddique, M. A. B. (2022). Arsenic Concentration in Groundwater of Meherpur District, Southwestern Bangladesh: Sources of Arsenic, Quality Evaluation for Irrigation and Health
44 Ramim, S. S., Sultana, H., Akter, T., & Ali, M. A. (2017). Removal of arsenic from groundwater using iron-coated jute-mesh structure. Desalination and Water Treatment, 100, 347-353.   DOI
45 Roy, P. K., Roy, B., & Roy, B. C. (2016). Assessment of groundwater quality for drinking and irrigation purposes in Comilla District of Bangladesh. International Journal of Scientific and Research Publications, 6(7), 52-59.
46 Sancha, A. M. (2006). Review of coagulation technology for removal of arsenic: case of Chile. Journal of Health, Population, and Nutrition, 24(3), 267-272. PMCID: PMC3013246
47 Smiech, K. M., Tolsma, A., Kovacs, T., Dalbosco, V., Yasadi, K., Groendijk, L., & Agostinho, L. L. (2018). Comparing mixed media and conventional slow-sand filters for arsenic removal from groundwater. Water, 10(2), 119.   DOI
48 Ahmed, M. F. (2001, May). An overview of arsenic removal technologies in Bangladesh and India. In Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka (pp. 5-7).
49 Adeloju, S. B., Khan, S., & Patti, A. F. (2021). Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities-a review. Applied Sciences, 11(4), 1926.   DOI
50 Ahmed, A., Ghosh, P. K., Hasan, M., & Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a southwestern coastal area of Bangladesh. Environmental monitoring and assessment, 192(4), 1-15.   DOI
51 Meharg AA, Deacon C, Campbell RC, Carey AM, Williams PN, Feldmann J, Raab A. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. J Environ Monit. 2008 Apr;10(4):428-31. doi: 10.1039/b800981c. Epub 2008 Mar 7. PMID: 18385862.   DOI
52 Sultana, M., Mou, T. J., Sanyal, S. K., Diba, F., Mahmud, Z. H., Parvez, A. K., & Hossain, M. A. (2017). Investigation of Arsenotrophic Microbiome in Arsenic-Affected Bangladesh Groundwater. Groundwater, 55(5), 736-746.   DOI
53 Seddique, A. A., Masuda, H., Anma, R., Bhattacharya, P., Yokoo, Y., & Shimizu, Y. (2019). Hydrogeochemical and isotopic signatures for the identification of seawater intrusion in the pale beach
54 Shafiquzzaman, M., Azam, M. S., Mishima, I., & Nakajima, J. (2009). Technical and social evaluation of arsenic mitigation in rural Bangladesh. Journal of Health, Population, and Nutrition, 27(5), 674-683. PMCID: PMC2928078
55 Moni, S. A., Satter, G. S., Reza, A. H. M., & Ahsan, M. (2019). Hydrochemistry and arsenic contamination of shallow aquifers in Bidyananda and Nazimkhan Unions, Rajarhat Upazilla, Kurigram, Bangladesh. Journal of the Geological Society of India, 94(4), 395-404.   DOI
56 Lopez-Guzman, M., Alarcon-Herrera, M. T., Irigoyen-Campuzano, J. R., Torres-Castanon, L. A., & Reynoso-Cuevas, L. (2019). Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Science of the Total Environment, 678, 181-187.   DOI
57 Maier, M. V., Isenbeck-Schroter, M., Klose, L. B., Ritter, S. M., & Scholz, C. (2017). In situ-mobilization of arsenic in groundwater-an innovative remediation approach. Procedia Earth and Planetary Science, 17, 452-455.   DOI
58 Ahn, J.S., 2012.Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environ. Geochem. Health 34,43e54.   DOI
59 Ali, M. R., Faruque, M. O., Islam, M. T., Molla, M. T., Ahammed, M. S., Mahmud, S., & Mohiuddin, A. K. M. (2021). Appraisal of Heavy Metal Presence and Water Quality having Microbial Load and Associated Human Health Risk: A study on tube-well water in Nalitabari township of Sherpur district, Bangladesh
60 Machingura F and Lally S (2017) The sustainable development goals and their trade-offs. Overseas Development Institute. https://cdn.odi.org/media/documents/11329.pdf
61 Majumder, S., Nath, B., Sarkar, S., Islam, S. M., Bundschuh, J., Chatterjee, D., & Hidalgo, M. (2013). Application of natural citric acid sources and their role on arsenic removal from drinking water: A green chemistry approach. Journal of Hazardous Materials, 262, 1167-1175. DOI: 10.1016/j.jhazmat.2012.09.00   DOI
62 Massachusetts Institute of Technology (2009) Dissolved arsenic in Bangladesh drinking water is from human alteration of landscape. ScienceDaily, 16 November. www.sciencedaily.com/releases/2009/11/091115134130.htm
63 Mathieu, J. L., Gadgil, A. J., Addy, S. E., & Kowolik, K. (2010). Arsenic remediation of drinking water using iron oxide coated coal bottom ash. Journal of Environmental Science and Health, Part A, 45(11), 1446-1460. DOI: 10.1080/10934529.2010.500940.   DOI
64 Medunic, G., Fiket, Z. & Ivanic, M. (2020). Arsenic contamination status in Europe, Australia, and other parts of the world. In Arsenic in Drinking Water and Food (pp. 183-233). Springer, Singapore.
65 Ganguli, S., Rifat, M., Das, D., Islam, S., & Islam, M. N. (2021). Groundwater Pollution in Bangladesh: A Review. Grassroots Journal of Natural Resources, 4(04), 115-145.   DOI
66 Aziz, Z., Bostick, B. C., Zheng, Y., Huq, M. R., Rahman, M. M., Ahmed, K. M., & Van Geen, A. (2017). Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Applied geochemistry, 77, 167-177.   DOI
67 Ahmed, N., Bodrud-Doza, M., Islam, S. M., Choudhry, M. A., Muhib, M., Zahid, A., & Quaiyum, A. (2019). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, northeastern Bangladesh. Acta Geochimica, 38(3), 440-455.   DOI
68 Amrose, S.E., Bandaru, S.R.S., Delaire, C., van Genuchten, C.M., Dutta, A., DebSarkar, A., Orr, C., Roy, J., Das, A., & Gadgil, A.J. (2014). Electro-chemical arsenic remediation: field trials in West Bengal. Science of the Total Environment, 488, 539-546. DOI: 10.1016/j.scitotenv.2013.11.074   DOI
69 Ayers, J. C., Goodbred, S., George, G., Fry, D., Benneyworth, L., Hornberger, G., & Akter, F. (2016). Sources of salinity and arsenic in groundwater in southwest Bangladesh. Geochemical transactions, 17(1), 1-22.   DOI
70 Bangladesh Bureau of Statistics (http://www.bbs.gov.bd/)
71 Barnaby, R., Liefeld, A., Jackson, B. P., Hampton, T. H., & Stanton, B. A. (2017). Effectiveness of tabletop water pitcher filters to remove arsenic from drinking water. Environmental Research, 158, 610-615. DOI: 10.1016/j.envres.2017.07.018   DOI
72 Bissen, M., & Frimmel, F. H. (2003). Arsenic-a review. Part II: oxidation of arsenic and its removal in water treatment. CLEAN-Soil, Air, Water, 31(2), 97-107. DOI: 10.1002/aheh.200300485   DOI
73 Clifford, D, A., Sorg, T. J., Ghurye, G. L. (1990) Ion exchange and inorganic adsorption In: Pontius F (Eds) Water Quality and Treatment. (pp. 1-90), American Water Works Association, McGraw Hill, New York.
74 Glodowska, M., Stopelli, E., Schneider, M., Rathi, B., Straub, D., Lightfoot, A., & Kappler, A. (2020). Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 1(1), 1-7.   DOI
75 Kumasaka, M. Y., Yamanoshita, O., Shimizu, S., Ohnuma, S., Furuta, A., Yajima, I., Nizam, S., Khalequzzaman, M., Shekhar, H. U., Nakajima, T. & Kato, M. (2013). Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water. Archives of Toxicology, 87(3), 439-447. DOI: 10.1007/s00204-012-0964-6   DOI
76 Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and
77 Gonzalez-Horta, C., Ballinas-Casarrubias, L., S anchez-Ramirez, B., Ishida, M., Bar- rera-Hernandez, A., Guti errez-Torres, D., Zacarias, O., Saunders, R., Drobn a, Z., Mendez, M., Garcia-Vargas, G., 2015. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int. J. Environ. Res. Publ. Health 12 (5), 4587e4601. https://doi.org/10.3390/ijerph120504587.   DOI
78 Goren, A. Y., & Kobya, M. (2021). Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere, 263, 128253.   DOI
79 Chakraborti, D., Rahman, M. M., Mukherjee, A., Alauddin, M., Hassan, M., Dutta, R. N. ... & Hossain, M. M. (2015). Groundwater arsenic contamination in Bangladesh-21 Years of research. Journal of Trace Elements in Medicine and Biology, 31, 237-248.   DOI
80 Bundschuh, J., Bhattacharya, P., Sracek, O., Mellano, M., Ramirez, A.; Storniolo, A., Martin, R., Cortes, J., Litter, M. & Jean, J.- S. (2011). Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health, Part A, 46(11), 1297-1310. DOI: 10.1080/10934529.2011.598838   DOI
81 Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., Stute, M., Mailloux, B. J., Knappett, P. S. ... & van Geen, A. (2020). Arsenic contamination of Bangladesh aquifers is exacerbated by clay layers. Nature communications, 11(1), 1-9.   DOI
82 Groundwater: a review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15(10), 2278.   DOI
83 Zhang, Z., Xiao, C., Adeyeye, O., Yang, W., & Liang, X. (2020). Source and mobilization mechanism of iron, manganese, and arsenic in groundwater of Shuangliao City, Northeast China. Water, 12(2), 534.   DOI
84 Zhou, Y., Zeng, Y., Zhou, J., Guo, H., Li, Q., Jia, R. ... & Zhao, J. (2017). Distribution of groundwater arsenic in Xinjiang, PR China. App
85 Faroque, S., & South, N. (2022). Water pollution and environmental injustices in Bangladesh. International Journal for Crime, Justice and Social Democracy, 11(1), 1-13.
86 Thakur, L. S., & Mondal, P. (2017). Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation. Journal of Environmental Management, 190, 102-112. DOI: 10.1016/j. jenvman.2016.12.053   DOI
87 Sawada, N., Iwasaki, M., Inoue, M., Takachi, R., Sasazuki, S., Yamaji, T., ... & Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: the Japan Public Health Center-based (JPHC) Prospective Study. Cancer Causes & Control, 24(7), 1403-1415.   DOI
88 Middleton, D. R. S., Watts, M. J., Hamilton, E. M., Ander, E. L., Close, R. M., Exley, K. S., ... & Polya, D. A. (2016). Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Scientific reports, 6(1), 1-11.   DOI
89 Mohan, D., & Pittman Jr, C. U. (2007). Arsenic removal from water/wastewater using adsorbents-a critical review. Journal of Hazardous Materials, 142(1-2), 1-53. DOI: 10.1016/j.jhazmat.2007.01.006   DOI
90 Olszewska, J. P., Heal, K. V., Winfield, I. J., Eades, L. J., & Spears, B. M. (2017). Assessing the role of bed sediments in the persistence of red mud pollution in a shallow lake (Kinghorn Loch, UK). Water Research, 123, 569-577.   DOI
91 Wei, M., Wu, J., Li, W., Zhang, Q., Su, F., & Wang, Y. (2021). Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Exposure and Health, 1-20.
92 Uddin, M. G., Moniruzzaman, M., Quader, M. A., & Hasan, M. A. (2018). Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7, 220-231.   DOI
93 United Nations (2020) Inequality in a rapidly changing world. https://www.un.org/development/desa/dspd/wpcontent/uploads/sites/22/2020/01/World-Social-Report-2020-FullReport.pdf
94 U.S Environmental Protection Agency. https://cfpub.epa.gov/safewater/arsenic/arsenictradeshow/arsenic.cfm?action=Ion%20Exchange
95 Whaley-Martin, K. J., Mailloux, B. J., van Geen, A., Bostick, B. C., Ahmed, K. M., Choudhury, I., & Slater, G. F. (2017). Human and livestock waste as a reduced carbon source contributing to the release of arsenic to shallow Bangladesh groundwater. Science of the Total Environment, 595, 63-71.   DOI
96 The US Environmental Protection Agency, 2015. https://www.epa.gov/
97 Polya, D. A., & Middleton, D. R. (2017). Arsenic in drinking water: Sources & human exposure. Best practice guide on the control of arsenic in drinking water, 1-24.
98 Pfaff, A., Schoenfeld Walker, A., Ahmed, K. M., & van Geen, A. (2017). The reduc in exposure to arsenic from drinking well water in Bangladesh is limited by insufficient testing and awareness. Journal of Water, Sanitation and Hygiene for Development, 7(2), 331-339.   DOI
99 Pokhrel, D., & Viraraghavan, T. (2009). Biological filtration for removal of arsenic from drinking water. Journal of Environmental Management, 90(5), 1956-1961. DOI: 10.1016/j.jenvman.2009.01.004   DOI
100 Howladar, M. F., Al Numanbakth, M., & Faruque, M. O. (2018). An application of Water Quality Index (WQI) and multivariate statistics to evaluate the water quality around Maddhapara Granite Mining Industrial Area, Dinajpur, Bangladesh. Environmental Systems Research, 6(1), 1-18.   DOI
101 Hoover, J., Gonzales, M., Shuey, C., Barney, Y., & Lewis, J. (2017). Elevated arsenic and uranium concentrations in unregulated water sources on the Navajo Nation, USA. Exposure and Health, 9(2), 113-124.   DOI
102 WHO- World Health Organization. (2018). Arsenic [Fact sheet no. 372]. Retrieved from http://www.who.int/mediacentre/factsheets/ fs372/end