• Title/Summary/Keyword: array antennas

Search Result 386, Processing Time 0.022 seconds

Design of Dipole Array Antennas for PCS/IMT-2000 (PCS/IMT-2000을 위한 다이폴 배열 안테나의 설계)

  • 최학윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.873-881
    • /
    • 2002
  • In this paper, the rectangular reflector antenna with 8-dipole array for PCS band (1,750 MHz ~ l,870 MHz) and IMT-2000 band(1,885 MHz ~ 2,200 MHz) is designed and the radiation characteristics are analyzed using the method of moments and HFSS(High Frequency Structure Simulator). To verify the analysis results, rectangular reflector antenna with 8-dipole array is fabricated and the calculated results are compared with the measured results. The measured results show good agreement with the calculated results. As a result of measurements, bandwidth(VSWR< 1.5) of 450 MHz is achieved at PCS and IMT-2000 band and gain is 16 dBi. The designed antenna can be used as the base station antenna for PCS/IMT-2000.

A Study on Adaptive Sparse Matrix Beamforming Algorithm of Error Beam Steering Vector for Target Estimation (목표물 추정을 위한 오차 빔 지향벡터의 적응 회소 행렬 빔형성 알고리즘 연구)

  • Kang, Kyoung Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • In this paper, we estimates the direction of arrival of desired a target using linear array antenna in wireless communication. Direction of arrival estimation is to estimate for desired target position among incident signals on receiver array antennas. This paper improved estimation of direction of arrival for target using optimum weight, high resolution adaptive beamforming algorithm, and sparse matrix for driection of arrival estimation. Through simulation, we showed that we are performance the analysis to compare general algorithm with proposed algorithm. We show that propose algorithm more improve for direction of estimation than general beamforming algorithm.

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment (이동형 재밍환경에서 널 합성을 위한 적응형 널링 알고리즘)

  • Seo, Jongwoo;Park, Dongchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.676-683
    • /
    • 2016
  • In this paper, an adaptive nulling algorithm which can be used to form nulls in the direction of jammer or interference signals in array antennas of single port system is proposed. The proposed adaptive algorithm does not require a priori knowledge of the incoming signal direction and can be applied to the partially adaptive arrays. This algorithm is the combination of the PSO(Particle Swam Optimization) algorithm and the gradient-based perturbation adaptive algorithm, which shows stable nulling performance adaptively even on the moving jammer environment where the incident direction of the interference signal is changing with time.

Adaptive Nulling Algorithm to Reduce the Main-Beam Distortion in Single-Port Phased Array Antenna (단일포트 위상배열안테나에서 주빔 왜곡 현상을 줄이기 위한 적응형 널링 알고리즘)

  • Seo, Jongwoo;Park, Dongchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.808-816
    • /
    • 2016
  • In this paper, a new technique and cost function which can be to classify jamming signal and target signal from the spectral distribution of received signal in order to minimize the main beam distortion of target signal and to form nulls in the direction of jamming signal in array antennas of single port system is proposed. The proposed cost function is applied to the adaptive algorithm which has the fast convergence and stable nulling performance through the combination of the PSO(Particle Swam Optimization) algorithm and the gradient-based perturbation algorithm, which shows stable nulling performance adaptively even under the moving jamming signal where the incident direction of the jamming signal is changing with time.

Improved Genetic Algorithm for Pattern Synthesis of Phased Array Antenna (위상 배열 안테나의 패턴 합성을 위한 개선된 유전 알고리즘)

  • Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.299-304
    • /
    • 2018
  • An improved genetic algorithm was proposed for pattern synthesis of an adaptive beam forming system using phased array antennas. The proposed genetic algorithm is an algorithm that adds acquired characteristics procedure to solve local optimization using the diversity. The performance of the proposed genetic algorithm is verified through the problem of finding a suitable chromosome for a picture composed of binary. And it is confirmed that it is suitable for the adaptive beam forming system based on the performance problem of combining main beam and two pattern nulls.

Design of Scan-Capable Fabry Perot Cavity Antenna Using Artificial Magnetic Conductors (인공 자기 도체를 이용한 스캔 가능한 패브리 패롯 공진기형 안테나 설계)

  • Kim, Myong-Gyun;Kim, Jong-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1025-1033
    • /
    • 2012
  • Fabry-Perot cavity(FPC) antennas with artificial magnetic conductor(AMC) surface are designed in order to provide scan capability by $4{\times}1$ array feed inside the cavity. The proposed antenna, excited by $4{\times}1$ thinned array, not only achieve higher directivities but also improve suppression of sidelobe level(SLL) relative to that of the thin array alone. The FPC antenna with the height of a quarter wavelength generate maximum gain of 19 dB, SLL suppression of 14 dB and maximum scan angle of $8^{\circ}$ under the feed phase difference of $90^{\circ}$ at the design frequency of 12 GHz.

Design of Three-elements CRPA Arrays Using Improved Low-elevation Gain (저고도각 고이득 특성을 이용한 3 소자 CRPA 배열 안테나 설계)

  • Yoo, Sungjun;Byun, Gangil;Lee, Jun-yong;Choo, Hosung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • In this paper, we propose a three-element CRPA array with improved low-elevation gain. The proposed antenna consists of a feed patch and a radiating patch, and the feed patch is connected by a coaxial cable. The radiating patch is electromagnetically coupled to the feed patch, which allows to improve the low-elevation gain of the antenna. To demonstrate the suitability of the proposed antenna, the antenna characteristics are measured in a full anechoic chamber. The resulting bore-sight gain is 2.8 dBic with an axial ratio of 2.7 dB, and the average gain at the low-elevation direction of $75^{\circ}$ is -1.4 dBic. The results verify that the proposed antenna is suitable for CRPA arrays with anti-jamming capability.

A Study on Antenna of Low-Probability of Intercept for LOS Datalink System (가시선 데이터링크용 저피탐 안테나에 관한 연구)

  • Park, Jinwoo;Yu, Byunggil;Jung, Euntae;Park, Ilhyun;Seo, Jongwoo;Jung, Jaesoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.519-526
    • /
    • 2021
  • In this paper, an array antenna for LOS datalink for mounting UAV(Unmanned Aerial Vehicle) of low-probability of intercept is presented. For low RCS, radome was designed by conformal form, and other components were inserted into the UAV. The antenna of the transmitter and receiver are each composed of 12×12 array antennas, and include a beam steering function by controlling the phase of the unit element for the Uni-directional pattern and the Bi-directional pattern. As a result of the measurement of the manufactured antenna, it was confirmed that all the required specifications were met, and the installing possibility of the UAV platform on low-probability of intercept in the future was confirmed.

CMOS true-time delay IC for wideband phased-array antenna

  • Kim, Jinhyun;Park, Jeongsoo;Kim, Jeong-Geun
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.693-698
    • /
    • 2018
  • This paper presents a true-time delay (TTD) using a commercial $0.13-{\mu}m$ CMOS process for wideband phased-array antennas without the beam squint. The proposed TTD consists of four wideband distributed gain amplifiers (WDGAs), a 7-bit TTD circuit, and a 6-bit digital step attenuator (DSA) circuit. The T-type attenuator with a low-pass filter and the WDGAs are implemented for a low insertion loss error between the reference and time-delay states, and has a flat gain performance. The overall gain and return losses are >7 dB and >10 dB, respectively, at 2 GHz-18 GHz. The maximum time delay of 198 ps with a 1.56-ps step and the maximum attenuation of 31.5 dB with a 0.5-dB step are achieved at 2 GHz-18 GHz. The RMS time-delay and amplitude errors are <3 ps and <1 dB, respectively, at 2 GHz-18 GHz. An output P1 dB of <-0.5 dBm is achieved at 2 GHz-18 GHz. The chip size is $3.3{\times}1.6mm^2$, including pads, and the DC power consumption is 370 mW for a 3.3-V supply voltage.