• Title/Summary/Keyword: array antenna system

Search Result 489, Processing Time 0.021 seconds

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

The Development of a Beam Steering System for X-band 2-D Phased Array Antenna (X-대역 2차원 위상배열안테나 빔조향 시스템 개발)

  • Kim, Doo-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.92-98
    • /
    • 2008
  • A beam steering system of X-band 2-D phased array antenna for radar application is developed. The beam steering system consists of real-time command generator, beam steering unit, control PCB of array module and power supply. It plays a role of beam steering and on-line check of phased array antenna. The performance of beam steering system is verified with pulse timing of current control in phase shifters and measurement of far-field of phased array antenna. The developed beam steering system offers basic technology to develop full-scale beam steering system of multi-function radar.

Expansion of Variable Range of Oscillation Frequency of Active Phased Array Antenna by a Varactor Diode (바랙터다이오드에 의한 능동 위상차 배열 안테나의 발진 주파수 가변 범위의 확장)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.521-528
    • /
    • 2003
  • A varactor diode was utilized in order to expand variable range of the natural oscillation frequency of an active phased-array antenna. We have conformed experimentally that the variable range of the natural oscillation frequency was expanded about three times in the oscillator controlled by the varactor diode. When frequency difference was given to the oscillators in the two elements antenna system, phase difference was appeared between the oscillators. The 2-, 3-, 5-elements patch antenna array was composed for the beam scanning experiments. All the above patch antennas showed good phased array characteristics. The experimental results are as follows that the scanning angle of the 2-elements array antenna is 28.6$^{\circ}$, the 3-elements array antenna is 29.4$^{\circ}$, and the 5-elements array antenna is 26.2$^{\circ}$.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

Angle-of-Arrival Estimation Algorithm Based on Combined Array Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The Angle-of-Arrival (AOA) estimation in real time is one of core technologies for the real-time tracking system, such as a radar or a satellite. Although AOA estimation algorithms for various antenna types have been studied, most of them are for the single-shaped array antenna suitable to the specific frequency. In this paper, we propose the cascade AOA estimation algorithm for the combined array antenna with Uniform Rectangular Frame Array (URFA) and Uniform Circular Array (UCA), with the excellent performance for various frequencies. The proposed technique is consisted of Capon for roughly finding AOA groups with multiple signal AOAs and Beamspace Multiple Signal Classification (MUSIC) for estimating the detailed signal AOA in the AOA group, for the combined array antenna. In addition, we provide computer simulation results for verifying the estimation performance of the proposed algorithm.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

A Study on the Performance CDMA System Using Adaptive Array Antenna Beamforming Technique (적응 배열 안테나 빔형성 기법을 이용한 CDMA시스템 성능에 대한 연구)

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 2012
  • This paper is an analysis the performance of CDMA system using array antenna beamforming technique in wireless channels. Adaptive array beamforming antenna technique combine receive signal amplitude with phase in array antenna element, and can be incremental spatial filter function a direction of arrival signal using weight value. Through simulation, in this paper, we were an analysis to compare bit error rate of forward and backward channels using array antenna beamforming technique in order to interference signal decrease of CDMA fading enviroment. The result simulation, we get spatial diversity effect by using array antenna system, and improved the performance to MAI interference decrease.