• Title/Summary/Keyword: aromatic amino acid

검색결과 140건 처리시간 0.029초

백화옥수수 잎절편을 이용한 안토시아닌 생합성 조절제 탐색용 신규 검정법 확립 (A Novel Bioassay System for Screening of Compounds Affecting Anthocyanin Biosynthesis Pathway in White Corn Leaf Segment)

  • 김진석;이병회;이정애;오광훈;조광연
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.207-214
    • /
    • 2003
  • This study was carried out to establish a novel bioassay system for screening of compounds affecting aromatic amino acid or anthocyanin biosynthesis through investigating a degree of sucrose-induced anthocyanin formation such as size of plant material, buffer conditions, light intensity and irradiated duration, incubation temp., etc were determined and standard procedure (suitable experimental condition) was set up as follows. The second leaf blade of white corn seeding induced by fluridone treatment were segmented into a size of 5${\times}$5 min. The segments were floated on the solution of 1% sucrose in 1.0mM MES buffer (pH6.0∼6.5) and incubated at 26$^{\circ}C$ for 2days under the continuous light condition(70∼100$\mu$mol m$^{-2}$ s$^{-1}$ ). Anthocyanin in the purpled tissues was extracted with methanol containing 1% HCl and the optical density of the clear supematants was determined at 528mm. Influences of some chemicals were tested using this system. Glyphosate, 5-enolpyruvylshikimate 3-phosphate synthase inhibitor, showed most sensitive response with I$_{50}$ value at 3.3$\mu$M. Dicyclohexylcarbodiimide(DCCD) and parachloromercuribenzenesulfonic acid(PCMBS) had a relatively strong ingibition with I50 value at 7.1$\mu$M and 10.2$\mu$M, respectively. These results show that sucrose-induced anthocyanin formation in white com leaf segment provide a very simple and rapid system for searching new compounds affecting aromatic amino acid or anteocyanin biosynthesis by screening at less than 10$\mu$M.

Quantitative Analysis of Protein-RNA Interaction in A Class I tRNA Synthetase by Saturation Mutagenesis

  • Kim, Sung-Hoon
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.363-367
    • /
    • 1995
  • E. coli methionyl-tRNA synthetase is one of the class I tRNA synthetases. The Tryptophane residue at the position 461 located in the C-terminal domain of the enzyme is a key amino acid for the interaction with the anticodon of $tRNA^{Met}$. W461 was replaced with other amino acids to determine the chemical requirement for the interaction with the anticodon of $tRNA^{Met}$. Saturation mutagenesis at the position 461 generated a total of 12 substitution mutants of methionyl-tRNA synthetase. All the mutants showed the same in vivo stability as the wild-type enzyme, suggesting that the amino acid substitutions did not cause severe conformational change of the protein The mutants containing tyrosine, phenylalanine, histidine and cysteine substitutions showed in vivo activity while all the other mutants did not. The comparison of the in vitro aminoacylation activities of these mutants showed that aromatic ring structure, Van der Waals volume and hydrogen bond potential of the amino acid residue at the position 461 are the major determinants for the interaction with the anticodon of $tRNA^{Met}$.

  • PDF

Liriodenine이 PC12 세포중의 Dopamine 생합성에 미치는 영향 (Effects of Liriodenine on Dopamine Biosynthesis in PC12 Cells)

  • 김춘매;이재준;윤수옥;김유미;김영균;유시용;이명구
    • 생약학회지
    • /
    • 제34권1호통권132호
    • /
    • pp.55-59
    • /
    • 2003
  • The effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine content in PCl2 cells were investigated. Treatment of PC12 cells with liriodenine decreased dopamine content in a dose-dependent manner (33.6% inhibition at $10\;{\mu}M$ for 12 h). The $IC_{50}$ in value of liriodenine was $8.4\;{\mu}M$. Dopamine content decreased at 3 h and reached a minimal level at 12 h after the exposure to liriodenine. Under these conditions, the activities of tyrosine hydroxylase and aromatic L-amino acid decarboxylase were also inhibited at $10\;{\mu}M$ of liriodenine by 10.1% and 20.2% relative to control, respectively. In addition, liriodenine inhibited the increase in dopamine content induced by L-DOPA Treatments $(50-100\;{\mu}M)$ in PC12 cells. These results suggest that liriodenine inhibited dopamine biosynthesis and L-DOPA-induced increase in dopamine content by reducing the activities of tyrosine hydroxylase and aromatic L- amino acid decarboxylase in PC12 cells.

Liquid Chromatographic Resolution of Racemic $\alpha$-Amino Acid Derivatives on an Improved $\pi$-Acidic Chiral Stationary Phase Derived from (S)-Leucine

  • 현명호;이승준;류재정
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권10호
    • /
    • pp.1105-1109
    • /
    • 1998
  • A chiral stationary phase derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkyl amide (CSP 2) was applied in separating the two enantiomers of various π-basic aromatic derivatives of leucine N-propyl amide in order to evaluate π-basic aromatic groups as an effective derivatizing group for the resolution of a-amino acids. Subsequently N-(3,5-dimethoxybenzoyl) group was found to be very effective as a π-basic aromatic derivatizing group. Based on these results, N-(3,5-dimethoxybenzoyl) derivatives of various a-amino N-propyl amides, N,N-diethyl amides and esters were resolved on the CSP derived from (S)-N-(3,5-dinitrobenzoyl) leucine N-phenyl N-alkyl amide (CSP 2) and the resolution results were compared with those on the CSP derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-alkyl amide (CSP 1). The enantioselectivities exerted by CSP 2 were much greater than those exerted by CSP 1. In addition, racemic N-(3,5-dimethoxybenzoyl)-a-mino N,Ndiethyl amides were resolved much better than the corresponding N-(3,5-dimethoxybenzoyl)-a-mino N-propyl amides and esters on both CSPs. Based on these results, a chiral recognition mechanism utilizing the π-π donor-acceptor interaction and the two hydrogen bondings between the CSP and the analyte was proposed.

Alachlor의 제초기구(除草機構)에 관한 연구(硏究) - I.Alachlor가 귀리의 핵산(核酸), 아미노산 및 단백질합성(蛋白質合成)에 미치는 영향(影響) (A Study of Mode of Action of Alachlor - I. Effects of Alachlor on Nucleic acid, Amino acid and Protein Synthesis in Oat(Avena sativa L.))

  • 권성환;김재철
    • 한국잡초학회지
    • /
    • 제10권3호
    • /
    • pp.227-232
    • /
    • 1990
  • The effects of alachlor [2-chloro-2', 6' diethyl-N-(methoxymethyl) acetanilide] treatment on nucleic acid, amino acid and protein synthesis were studied. The amide herbicide alachlor blocks the biosynthesis of the amino acids isoleucine, valine and aromatic amino acid in oat root tips. Nucleic acid was inhibited, but was not proportional to reduction in protein synthesis. $1{\times}10^{-4}M$ of alachlor treatment of oat roots inhibited 36% DNA synthesis, but DNA synthesis was not inhibited at $1{\times}10^{-5}M$. RNA synthesis was inhibited by $1{\times}10^{-5}M$ and $1{\times}10^{-4}M$ of alachlor 16 and 27%, respectively, while inhibition of protein synthesis did occur at same concentrations. Inhibition of protein synthesis also did not occur at concentration below $1{\times}10^{-4}M$ alachlor. It suggest that inhibition of protein sythesis caused significantly by alachlor($1{\times}l0^{-3}M$) result from secondary action.

  • PDF

Identification of ${\omega}$-Aminotransferase from Caulobacter crescentus and Sitedirected Mutagenesis to Broaden Substrate Specificity

  • Hwang, Bum-Yeol;Ko, Seung-Hyun;Park, Hyung-Yeon;Seo, Joo-Hyun;Lee, Bon-Su;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.48-54
    • /
    • 2008
  • A putative ${\omega}$-aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the ${\omega}$-aminotransferase was investigated. AptA showed high activity for short-chain ${\beta}$-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the ${\omega}$-aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase (PDB ID: 1DGE) as a template. Then, the ${\omega}$-aminotransferase was rationally redesigned to increase the activity for 3-amino-3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type.

Luminol-H2O2-Cu(II) 시스템을 이용한 방향족 아미노산의 화학발광법적 정량 (Determination of aromatic amino acids by chemiluminometric assay with Luminol-H2O2-Cu(II) system)

  • 김경민;김영호;이상학
    • 분석과학
    • /
    • 제25권3호
    • /
    • pp.171-177
    • /
    • 2012
  • Luminol-$H_2O_2$-Cu(II) 시스템을 이용한 화학발광법을 사용하여 방향족 아미노산인 트립토판, 타이로신 및 페닐알라닌의 정량분석을 하였다. 세 종류의 방향족 아미노산(트립토판, 타이로신, 페닐알라닌)을 luminol-$H_2O_2$-Cu(II) 시스템에 첨가하였을 때 아미노산이 존재하지 않을 때보다 화학발광세기가 더욱 증가하는 현상을 관찰하였으며, 이러한 현상을 이용하여 각 방향족 아미노산을 정량분석 하였다. 방향족 아미노산의 최적분석 조건을 조사하기 위하여, Cu(II) 이온 촉매에 의한 루미놀과 과산화수소의 화학발광반응에 미치는 아미노산의 반응속도론적 영향을 조사하였고 과산화수소와 Cu(II) 이온의 농도 그리고 pH와 완충용액의 영향을 조사하였다. 루미놀 화학발광 시스템의 최적 분석조건 하에서 수용액 중의 방향족 아미노산 정량분석을 위해 얻은 검정곡선에서 직선성이 성립하는 농도 범위는 각각 트립토판은 $1.0{\times}10^{-6}{\sim}2.0{\times}10^{-5}\;M$, 타이로신은 $1.0{\times}10^{-6}{\sim}2.0{\times}10^{-5}\;M$ 그리고 페닐알라닌은 $2.0{\times}10^{-6}{\sim}2.0{\times}10^{-5}\;M$이었으며, 이 구간에서 각 아미노산에 대한 상대표준편차(n = 4)는 순차적으로 3.21%, 2.64% 그리고 2.48%이었다. 그리고 각 아미노산의 검출한계($3{\sigma}/s$)는 트립토판 $6.8{\times}10^{-7}\;M$, 타이로신 $5.7{\times}10^{-7}\;M$, 페닐알라닌 $9.6{\times}10^{-7}\;M$이었다.

방향족 아미노산에 의한 김치 유산균 생장의 제어 (Control of Lactic Acid Bacterial Growth in Kimchi by Aromatic Amino Acids)

  • 박현근;양문;한홍의
    • 미생물학회지
    • /
    • 제33권4호
    • /
    • pp.247-251
    • /
    • 1997
  • 아미노산이 김치유산균에 미치는 영향을 검토하였다. 발효온도 $15^{\circ}C$에서 형태가 다른 집락을 73개 분리하였다. 이 중에서 69.9%가 덱스트란 생성균주이었으며, Leuconostoc 속이 4.1%, Lactobacillus 속이 65.8%를 차지하였다. Tyrosine 500 ppm이 되도록 첨가한 배지에서 분리균주의 생장은 완전히 억제되었다. 그러나 실제로 이 아미노산을 첨가하여 만든 김치에서 분리된 총 집락수는 58개 이었고, 이 중에서 덱스트란 생성균주가 70.7%로 큰 변동이 없었으나 대신에 Leuconostoc 속이 41.4%로 증가하였고, Lactobacillus 속은 29.3%로 감소하였다. 각 속에서 우점종은 Leu. mesenteroides와 Lac. minor이었다. 따라서 실제 김치에서 tyrosine은 Lactobacillus 속의 생장을 억제하는 효과가 있었다.

  • PDF

A Novel Synthesis of Heterocyclic Compounds Containing Coumarin Moiety of Potential Antimicrobial Activity

  • El-Fattah, M. E. Abd
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.723-728
    • /
    • 1998
  • The chemical behaviours of 4-methyl-2-oxo-2H-benzopyran-7-yl oxoacetyl hydrazine (2) towards some different reagents such as anhydride compounds, aromatic aldehydes, carb on disulphide, and nitrous acid yielded the corresponding pathalazine derivatives (3, 4, 5), hydrazone derivative (6), 1,3,4-oxadiazole derivative (7, 8, 9) and acid azide (10) respectively. Treatmen of 10 with absolute alcohols, amines and ethyl amino acid ester gave the corresponding carbamate derivative (11), substituted urea derivative (12) and ethyl substituted alkyl acetate (13) respectively. The biological activity of some synthesized compounds was evaluated.

  • PDF

Proteolytic System of Streptococcus thermophilus

  • Rodriguez-Serrano, G.M.;Garcia-Garibay, M.;Cruz-Guerrero, A.E.;Gomez-Ruiz, L.;Ayala-Nino, A.;Castaneda-Ovando, A.;Gonzalez-Olivares, L.G.
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1581-1588
    • /
    • 2018
  • The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.