• Title/Summary/Keyword: armor block

Search Result 20, Processing Time 0.026 seconds

Experimental Study of the Stability of Under layer Armor Block (불규칙파에 의한 중간피복블록의 안정성 검토)

  • Kim, Kyu-Han;Choe, Hyun;Pyun, Chong-Kun
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.171-175
    • /
    • 2000
  • 국내 시공사례가 가장 많은 사석식 경사제는 피복층(cover layer), 중간피복층(underlayer), 그리고 내부사석(core and bedding layer)으로 이루어져 있다. 이 중 중간피복층의 재료는, 피복재의 중량(W)에 대한 중량비 W/10에서 W/15의 자연석을 이용하여 시공하는 것이 보통이다. 그러나, 항만의 대형화에 따른 설계파의 증가로 이형블록과 같은 피복재의 소요 중량이 증가하는 추세이며 이에 따른 중간피복재의 소요중량도 크게 되어 그에 만즌 자연석을 구하기 어려운 실정이다. (중략)

  • PDF

Wave Overtopping Characteristics of Rubble Mound Revetment and Wave Absorbing Revetment (사석 경사제 및 소파블록 경사제 호안의 월파특성)

  • Lee, Won;Park, Jin-Ho;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.443-445
    • /
    • 2008
  • Determination of allowable overtopping rate for coastal structure is a key point to determine the application of background of coastal structure while considering safety and economic efficiency. Thus, the accurate estimation of overtopping rate against coastal structure is essential. In general, estimation of overtopping against the coastal structure is based on an empirical formula or hydraulic experiment. In this study, we investigate the behavior of overtopping for rubble mound coastal structure with rubble armor stone and wave dissipating block using hydraulics experiment, and domestic or foreign design standard.

  • PDF

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

Estimation of Erosion Damage of Armor Units of Rubble Mound Breakwaters Attacked by Typhoons (태풍에 의한 경사식 방파제의 피복재 침식 피해 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.295-305
    • /
    • 2010
  • Although the rubble mound breakwaters in Korea have been damaged by typhoons almost every year, quantification of erosion of armor block have seldomly been made. In this paper, the damage of armor units is standardized by the relative damage. In the case where the number of damaged units is reported, it is divided by the total number of units to calculate the relative damage. In the case where the rehabilitation cost is reported, the relative damage is calculated by using its relationship with the present value of the past rehabilitation cost. The relative damage is shown to have strong correlations with the typhoon parameters such as nearest central air pressure and maximum wind speed at each site. On the other hand, the existing numerical methods for calculating the cumulative damage are compared with hydraulic model tests. The method of Melby and Kobayashi (1998) is shown to give a reasonable result, and it is used to calculate the relative damage, which is compared with the measured damage. A good agreement is shown for the East Breakwater of Yeosu Harbor, while poor agreement is shown for other breakwaters. The poor agreement may be because waves of larger height than the design height occurred due to strong typhoons associated with climate change so that the relative damage increased during the last several decades.

Study on the Basic Design Method of Submerged Breakwater Composed of Double-Layer Permeable Blocks (투수성 블록 2층적으로 구성된 잠제의 기본설계법 연구)

  • Lee, Dal Soo;Oh, Sang-Ho;Park, Yi-Dong;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • The focus of this study is to provide a method for determining the dimension of a submerged breakwater satisfying the target transmission performance or predicting the transmission coefficient of a given structure. This method was developed based on data analysis of the physical experiment that was carried out by using the submerged breakwater composed of double-layer permeable blocks. Two different armor blocks of Tetrapod and Triangular Pyramid Block were used in the experiment. The parameter $K_Th_b/h$ was introduced in the analysis of the measurement data. By using the linear regression line deduced from the analysis of the experimental data, it was possible to readily predict the wave transmission coefficient irrespective different water depths at the crest of the submerged breakwater, under the condition of significant decrease in transmitted wave height due to the submerged breakwater. This method can be effectively utilized for estimating the necessary number of blocks used for the submerged breakwater as well as comparing the transmission characteristics of the submerged breakwater according to use of different armor blocks.

Development of Reliability-Based Design Program based on the MATLAB GUI Environment (MATLAB GUI 환경기반 신뢰성 설계기법의 개발)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Tae-Hun;Kim, Jeong-Dae;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.415-422
    • /
    • 2010
  • Development of the reliability-based design program in the GUI environment is inadequate for engineers familiar with the deterministic design to deal with the international design criterion based on the probabilistic design. In this study, the design program based on the GUI environment is developed in order to more efficiently input the design factor and more easily carry out the design works. The GUI environment is the GUIDE (Graphic User Interface Development Environment) tool supported by the latest MATALB version 7.1. In order to test the model reliability, the probabilities of failure (POF) on the breakwater armor block (AB) and gravity quay-wall (QW) in the sliding mode are computed using the model in the Level II and Level III. The POF are 55.4~55.7% for breakwater AB and 0.0006~0.0007% for gravity QW. A non-GUI environment program results of the POF are 55.6% for breakwater AB and 0.0018% for gravity QW. In comparison, the POF difference is negligible for breakwater AB because the exact input design parameters are available, whereas the large POF difference, but within the same order, for gravity QW can be explained by the difference of the input design factors because of the poor input data information.

A Study on Hydrophilic Protection Block Development for Reduction of coastal disaster (연안재해 저감을 위한 친수형 호안 블록개발에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.211-219
    • /
    • 2017
  • Among government projects for reduction of coastal disaster, coastal maintenance project stage 1(2000~2009) and stage 2(2010~2019) to reduce coastal erosion and sedimentation are currently under process. In performing the coastal maintenance projects, it is necessary to install artificial concrete armor units for coastal protection. Presently in Korea, products manufactured in Japan are applied to the site, or blocks self-developed by the construction firms are installed. However, there is a lack of technical reviews such as verification of hydraulic characteristics, securing the stability and design techniques. This study is intended to develop waterfront shore protection blocks with good accessibility of people and excellent coastal disaster reduction and protection capability. Through this study, hydraulic characteristics and stability coefficients of shore protection blocks could be drawn.

Experimental Investigation on the Change of Stability Coefficient of Tetrapod According to Difference in Density (비중 차이에 따른 테트라포드 안정계수 변화에 관한 실험적 연구)

  • Lee, Dal Soo;Oh, Sang-Ho;Cho, Bong Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • In this study, a physical experiment was performed to investigate the change in the stability coefficient, defined by Hudson equation, for the tetrapod of different specific densities. The experiment was carried out once (with no repetition) for a rubble mound breakwater with 1:1.5 slope. In this experiment, the stability coefficient for the high-density tetrapod was greater than that for the normal-density tetrapod. This indicates variability of the stability coefficient according to change in the density of tetrapod. Further experiments and detailed analysis are required to investigate the effect of the density on the stability coefficient of tetrapod.

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.

A Study on Experiment for Countermeasures to Overtopping at Tapdong Revetment in Jeju (제주시 탑동 호안 월파 대응 방안에 관한 모형실험)

  • Koh, Hyeok-Jun;Kim, Jeong-Rok;Cho, Il-Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.163-169
    • /
    • 2012
  • In this paper, model test on the Tapdong's revetment at Jeju-si has been conducted to figure out the causes of frequent occurrence of wave overtopping and to suggest the action plan. In the model test, the reflection coefficients were measured according to the change of wave periods for with and without armor stones. Also, the wave overtopping rate and the wave pressures inside revetment structure for 4 types of upper block were estimated for various wave heights and wave periods, which are chosen based on the NE design wave with 50 year return period. It is found that the increase of the upper structure's height and the modification of the curved protruding shape are effective in reducing the overtopping rate.