• Title/Summary/Keyword: arginine kinase

검색결과 28건 처리시간 0.021초

인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과 (A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells)

  • 박해선;전도연;우현주;류석우;김경민;김상국;박완;문병조;김영호
    • 생명과학회지
    • /
    • 제19권11호
    • /
    • pp.1529-1537
    • /
    • 2009
  • L-arginine 구조유사체인 L-canavanine의 인체 급성백혈병 Jurkat T 세포에 대한 apoptosis 유도활성이 단백질 티로신키나아제 $p56^{lck}$에 어떻게 조절되는지를 규명하기 위해 $p56^{lck}$를 발현하는 Jurkat T 세포주 E6.1과 $p56^{lck}$-결손 Jurkat T 세포주 JCaM1.6에 있어서 L-canavanine의 세포독성, L-canavanine에 의해 유도되는 apoptotic DNA fragmentation 및 apoptotic sub-$G_1$ peak를 비교하여 본 바, $p56^{lck}$-negative JCaM1.6 세포가 $p56^{lck}$-positive E6.1 세포에 비해 L-canavanine의 apoptotis 유도활성에 훨씬 더 민감한 것으로 나타났다. 이러한 $p56^{lck}$-negative JCaM1.6 세포의 민감성은 JCaM1.6 세포에 $p56^{lck}$ 유전자를 transfection시켜 발현시키면 현저히 감소되었다. L-Canavanine에 의해 유도되는 apoptosis관련 현상들을 $p56^{lck}$-stable transfectant인 JCaM1.6/lck 세포와 empty vector-transfectant 인 $p56^{lck}$-negaive JCaM1.6/vector 세포에서 Western blot analysis로 비교한 결과, L-canavanine에 의해 유도되는 mitochondrial membrane potential (${\Delta\Psi}m$)의 감소, caspase-9, -8, -7 및 -3의 활성화, 그리고 PARP 및 $PLC{\gamma}$-1의 분해가 JCaM1.6/vector 세포에 비해 JCaM1.6/lck 세포에서 더 약하게 나타났다. JCaM1.6/lck 세포를 2.5 mM L-canavanine으로 처리한 다음 세포 내 $p56^{lck}$ kinase 활성의 변화를 $\alpha$-casein을 기질로 하여 시간 별로 측정한 결과, L-canavanine의 처리 후 15분만에 $p56^{lck}$ kinase의 활성이 약 1.6배 증가되었으며 이후 6시간 동안은 약 1.3~1.4 배정도 증가된 수준으로 kinase 활성이 유지되는 것으로 확인되었다. L-Canavanine에 의한 apoptosis의 개시에 Fas/FasL 상호작용이 관련되는지를 규명하기 위해 FADD-negative Jurkat T 세포주 I2.1, caspase-8-negative Jurkat T 세포주 I9.2 및 wild-type Jurkat T 세포주 A3에 대한 L-canavanine의 세포독성을 비교한 결과, A3와 I2.1 세포의 경우는 L-canavanine의 세포독성이 동일하게 나타났고, 특히 caspase-8가 결손된 I9.2 세포의 경우는 L-canavanine의 세포독성에 대한 민감성이 A3와 I2.1 세포에 비해 단지 미약하게만 완화되는 것으로 나타나, L-canavanine의한 apoptosis에는 Fas/FasL 상호작용이 관련되어 있지 않으며, 또한 caspase-8의 역할이 필수적이지 않음을 시사하였다. Jurkat T 세포에 있어서 L-canavanie에 의해 유도되는 sub-$G_1$ peak 및 caspases 활성화에 미치는 pan-caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor (z-LEHD-fmk), caspase-3 inhibitor (z-DEVD-fmk), caspase-4 inhibitor (z-LEVD-fmk) 및 caspase-12 inhibitor (z-ATAD-fmk)의 영향을 조사한 결과, L-canavanie에 의한 apoptosis는 ${\Delta\Psi}m$의 감소, caspase-9 및 caspase -3의 활성화에 뒤따른 caspase-8 및 caspase-7의 활성화, 그리고 PARP의 분해의 순서로 유도되는 것으로 나타났으며, 아울러 caspase-9의 활성화와 함께 caspase-12의 활성화가 L-canavanine 처리에 따른 caspase-3의 활성화에 요구되는 것으로 확인되었다. 결론적으로, L-canavanine 처리에 의한 Jurkat T 세포의 apoptosis는 ${\Delta\Psi}m$ 감소, caspase-9, caspase-3 및 caspase-7의 활성화에 의해 유도되며, 이들 apoptosis 현상들은 $p56^{lck}$에 의해 negative regulation되었다.

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • 한국자기공명학회논문지
    • /
    • 제20권2호
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.

Vasoactive Intestinal Polypeptide Inhibits Pacemaker Activity via the Nitric Oxide-cGMP-Protein Kinase G Pathway in the Interstitial Cells of Cajal of the Murine Small Intestine

  • Kim, Byung Joo;Lee, Jae Hwa;Jun, Jae Yeoul;Chang, In Youb;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.337-342
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous depolarization (pacemaker potentials) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of vasoactive intestinal polypeptide (VIP) on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by whole-cell patch-clamp techniques. Addition of VIP (50 nM-$1{\mu}M$) decreased the amplitude of pacemaker potentials and depolarized resting membrane potentials. To examine the type of receptors involved in ICC, we examined the effects of the $VIP_1$ agonist and found that it had no effect on pacemaker potentials. Pretreatment with $VIP_1$ antagonist ($1{\mu}M$) for 10 min also did not block the VIP (50 nM)-induced effects. On the other hand exposure to 1H-(1,2,4)oxadiazolo(4,3-A)quinoxalin-1-one (ODQ, $100{\mu}M$), an inhibitor of guanylate cyclase, prevented VIP inhibition of pacemaker potentials. Similarly KT-5823 ($1{\mu}M$) or RP-8-CPT-cGMPS ($10{\mu}M$), inhibitors of protein kinase G (PKG) blocked the effect of VIP (50 nM) on pacemaker potentials as did N-nitro-L-arginine (L-NA, $100{\mu}M$), a non-selective nitric oxide synthase (NOS) inhibitor. These results imply that the inhibition of pacemaker activity by VIP depends on the NO-cGMP-PKG pathway.

The ybcF Gene of Escherichia coli Encodes a Local Orphan Enzyme, Catabolic Carbamate Kinase

  • Nam Yeun Kim;Ok Bin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1527-1536
    • /
    • 2022
  • Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.

흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용 (Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta)

  • 김상진;백성수;강형섭;김진상
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

혈청이 마우스 간 세포주 BNL CL.2의 Nitric Oxide 생성에 미치는 영향 (Effects of Serum on Nitric Oxide Production in Embryonic Mouse Liver Cell Line BNL CL.2)

  • 김유현;김신무;배현옥;유지창;정헌택;진효상
    • 대한의생명과학회지
    • /
    • 제5권1호
    • /
    • pp.85-93
    • /
    • 1999
  • 마우스 간 세포주인 BNL CL.2의 시험관내 배양에서 혈청과 IFN-$\gamma$가 세포주의 nitric oxide (NO)생성과 세포 손상에 미치는 영향을 알아보기 위한 실험을 하였다. 혈청이 공급된 배양에서 IFN-$\gamma$에 의한 세포 생존율은 거의 변동이 없었으나, 혈청을 제거한 배양에서는 약 65%의 생존율이 유지되었으며, NO생성 억제제인 N$^{G}$-monomethy-L-arginine (NMA)의 첨가는 농도 의존적으로 세포의 생존율을 감소시켰다. 혈청이 제거된 BNL CL.2 세포주는 IFN-$\gamma$ 단독 처리에서도 NO를 생성할수 있었으며, IFN-$\gamma$와 lipopolysaccharide (LPS)의 복합 처리는 세포주의 NO 생성을 상승적으로 증가시 켰다. 또한 protein tyrosine kinase (PTK) inhibitor인 herbimycin A와 genistein에 의해서 NO 생성이 억제되어 PTK의 활성이 혈청이 고갈된 BNL CL.2세포에서 NO의 생성에 중요한 역할을 담당하고 있기 때문으로 판단된다. IFN-$\gamma$의 독성은 혈청을 제거시킬 때 NO 생성 억제제에 상승적으로 간세포를 손상시키며, 이때 NO가 IFN-$\gamma$에 의해 유도된 손상을 어느 정도 억제시키는 것을 알 수 있었다.

  • PDF

MLCK and PKC Involvements via Gi and Rho A Protein in Contraction by the Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Park, Sun-Young;Shim, Jae-Ho;Kim, Mi-Na;Sun, Yih Hsiu;Kwak, Hyun-Soo;Yan, Xiangmei;Choi, Byung-Chul;Im, Chae-Uk;Sim, Sang-Soo;Jeong, Ji-Hoon;Kim, In-Kyeom;Min, Young-Sil;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.29-35
    • /
    • 2010
  • We have shown that myosin light chain kinase (MLCK) was required for the off-contraction in response to the electrical field stimulation (EFS) of feline esophageal smooth muscle. In this study, we investigated whether protein kinase C (PKC) may require the on-contraction in response to EFS using feline esophageal smooth muscle. The contractions were recorded using an isometric force transducer. On-contraction occurred in the presence of $N^G$-nitro-L-arginine methyl ester (L-NAME), suggesting that nitric oxide acts as an inhibitory mediator in smooth muscle. The excitatory composition of both contractions was cholinergic dependent which was blocked by tetrodotoxin or atropine. The on-contraction was abolished in $Ca^{2+}$-free buffer but reappeared in normal $Ca^{2+}$-containing buffer indicating that the contraction was $Ca^{2+}$ dependent. 4-aminopyridine (4-AP), voltage-dependent $K^+$ channel blocker, significantly enhanced on-contraction. Aluminum fluoride (a G-protein activator) increased on-contraction. Pertussis toxin (a $G_i$ inactivator) and C3 exoenzyme (a rhoA inactivator) significantly decreased on-contraction suggesting that Gi or rhoA protein may be related with $Ca^{2+}$ and $K^+$ channel. ML-9, a MLCK inhibitor, significantly inhibited on-contraction, and chelerythrine (PKC inhibitor) affected on the contraction. These results suggest that endogenous cholinergic contractions activated directly by low-frequency EFS may be mediated by $Ca^{2+}$, and G proteins, such as Gi and rhoA, which resulted in the activation of MLCK, and PKC to produce the contraction in feline distal esophageal smooth muscle.

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Characteristics of Diprophylline-Induced Bidirectional Modulation on Rat Jejunal Contractility

  • Liu, Fang-Fei;Chen, Da-Peng;Xiong, Yong-Jian;Lv, Bo-Chao;Lin, Yuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.47-53
    • /
    • 2014
  • In this study, we propose that diprophylline exerts bidirectional modulation (BM) on the isolated rat jejunal segment depending on its contractile state. The results supported the hypothesis. Diprophylline ($20{\mu}M$) exerted stimulatory effects on the contractility of jejunal segment in six low contractile states while inhibitory effects in six high contractile states, showing the characteristics of BM. Diprophylline-induced stimulatory effect was significantly blocked by atropine, indicating the correlation with cholinergic activation. Diprophylline-induced inhibitory effect was partially blocked by phentolamine, propranolol, and L-N-Nitro-Arginine respectively, indicating their correlation with sympathetic activation and nitric oxide-mediated relaxing mechanisms. Diprophylline-induced BM was abolished by tetrodotoxin or in a $Ca^{2+}$ free condition or pretreated with tyrosine kinase inhibitor imatinib, suggesting that diprophylline-induced BM is $Ca^{2+}$ dependent, and that it requires the presence of enteric nervous system as well as pacemaker activity of interstitial cells of Cajal. Diprophylline significantly increased the reduced MLCK expression and myosin extent in constipation-prominent rats and significantly decreased the increased MLCK expression and myosin extent in diarrhea-prominent rats, suggesting that the change of MLCK expression may also be involved in diprophylline-induced BM on rat jejunal contractility. In summary, diprophylline-exerted BM depends on the contractile states of the jejunal segments, requires the presence of $Ca^{2+}$, enteric nervous system, pacemaker activity of interstitial cells of Cajal, and MLCK-correlated myosin phosphorylation. The results suggest the potential implication of diprophylline in relieving alternative hypo/hyper intestinal motility.