Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0130

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein  

Jun Seop, Yun (Department of Oral Pathology, Yonsei University College of Dentistry)
Hyeeun, Song (Department of Oral Pathology, Yonsei University College of Dentistry)
Nam Hee, Kim (Department of Oral Pathology, Yonsei University College of Dentistry)
So Young, Cha (Department of Oral Pathology, Yonsei University College of Dentistry)
Kyu Ho, Hwang (Department of Oral Pathology, Yonsei University College of Dentistry)
Jae Eun, Lee (Department of Oral Pathology, Yonsei University College of Dentistry)
Cheol-Hee, Jeong (Department of Oral Pathology, Yonsei University College of Dentistry)
Sang Hyun, Song (Department of Oral Pathology, Yonsei University College of Dentistry)
Seonghun, Kim (Department of Oral Pathology, Yonsei University College of Dentistry)
Eunae Sandra, Cho (Department of Oral Pathology, Yonsei University College of Dentistry)
Hyun Sil, Kim (Department of Oral Pathology, Yonsei University College of Dentistry)
Jong In, Yook (Department of Oral Pathology, Yonsei University College of Dentistry)
Abstract
A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.
Keywords
Axin; Delta and Omicron variants; glycogen synthase kinase-3; nucleocapsid; phosphorylation; severe acute respiratory syndrome coronavirus 2;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahn, S.Y., Kim, N.H., Lee, K., Cha, Y.H., Yang, J.H., Cha, S.Y., Cho, E.S., Lee, Y., Cha, J.S., Cho, H.S., et al. (2017a). Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Axin-GSK3 interaction. Oncotarget 8, 31842-31855.   DOI
2 Ahn, S.Y., Yang, J.H., Kim, N.H., Lee, K., Cha, Y.H., Yun, J.S., Kang, H.E., Lee, Y., Choi, J., Kim, H.S., et al. (2017b). Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3. Oncotarget 8, 31856-31863.   DOI
3 Alfhili, M.A., Alsughayyir, J., McCubrey, J.A., and Akula, S.M. (2020). GSK-3-associated signaling is crucial to virus infection of cells. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118767.
4 Al-Kuraishy, H.M., Al-Gareeb, A.I., Alzahrani, K.J., Alexiou, A., and Batiha, G.E. (2021). Niclosamide for Covid-19: bridging the gap. Mol. Biol. Rep. 48, 8195-8202.   DOI
5 Cabantous, S., Terwilliger, T.C., and Waldo, G.S. (2005). Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102-107.   DOI
6 Carlson, C.R., Asfaha, J.B., Ghent, C.M., Howard, C.J., Hartooni, N., Safari, M., Frankel, A.D., and Morgan, D.O. (2020). Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol. Cell 80, 1092-1103.e4.   DOI
7 Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., and Huang, T.H. (2014). The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res. 103, 39-50.   DOI
8 Chen, H., Gill, A., Dove, B.K., Emmett, S.R., Kemp, C.F., Ritchie, M.A., Dee, M., and Hiscox, J.A. (2005). Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 79, 1164-1179.   DOI
9 Cohen, P. and Frame, S. (2001). The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769-776.   DOI
10 Cubuk, J., Alston, J.J., Incicco, J.J., Singh, S., Stuchell-Brereton, M.D., Ward, M.D., Zimmerman, M.I., Vithani, N., Griffith, D., Wagoner, J.A., et al. (2021). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936.
11 Dajani, R., Fraser, E., Roe, S.M., Yeo, M., Good, V.M., Thompson, V., Dale, T.C., and Pearl, L.H. (2003). Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 22, 494-501.   DOI
12 de Haan, C.A. and Rottier, P.J. (2005). Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165-230.   DOI
13 Doble, B.W. and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186.   DOI
14 Howng, S.L., Hwang, C.C., Hsu, C.Y., Hsu, M.Y., Teng, C.Y., Chou, C.H., Lee, M.F., Wu, C.H., Chiou, S.J., Lieu, A.S., et al. (2010). Involvement of the residues of GSKIP, AxinGID, and FRATtide in their binding with GSK3beta to unravel a novel C-terminal scaffold-binding region. Mol. Cell. Biochem. 339, 23-33.   DOI
15 Fraser, E., Young, N., Dajani, R., Franca-Koh, J., Ryves, J., Williams, R.S., Yeo, M., Webster, M.T., Richardson, C., Smalley, M.J., et al. (2002). Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J. Biol. Chem. 277, 2176-2185.   DOI
16 Fujimuro, M., Liu, J., Zhu, J., Yokosawa, H., and Hayward, S.D. (2005). Regulation of the interaction between glycogen synthase kinase 3 and the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen. J. Virol. 79, 10429-10441.   DOI
17 Hedgepeth, C.M., Deardorff, M.A., Rankin, K., and Klein, P.S. (1999). Regulation of glycogen synthase kinase 3beta and downstream Wnt signaling by axin. Mol. Cell. Biol. 19, 7147-7157.   DOI
18 Kaidanovich-Beilin, O. and Woodgett, J.R. (2011). GSK-3: functional insights from cell biology and animal models. Front. Mol. Neurosci. 4, 40.
19 Kim, N.H., Kim, H.S., Li, X.Y., Lee, I., Choi, H.S., Kang, S.E., Cha, S.Y., Ryu, J.K., Yoon, D., Fearon, E.R., et al. (2011). A p53/miRNA-34 axis regulates Snail1- dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417-433.   DOI
20 Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K., and Koike, T. (2006). Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749-757.   DOI
21 Ko, M., Jeon, S., Ryu, W.S., and Kim, S. (2021). Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. J. Med. Virol. 93, 1403-1408.   DOI
22 Liu, X., Verma, A., Garcia, G., Jr., Ramage, H., Lucas, A., Myers, R.L., Michaelson, J.J., Coryell, W., Kumar, A., Charney, A.W., et al. (2021). Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proc. Natl. Acad. Sci. U. S. A. 118, e2113401118.
23 Krutikov, M., Palmer, T., Tut, G., Fuller, C., Shrotri, M., Williams, H., Davies, D., Irwin-Singer, A., Robson, J., Hayward, A., et al. (2021). Incidence of SARS-CoV-2 infection according to baseline antibody status in staff and residents of 100 long-term care facilities (VIVALDI): a prospective cohort study. Lancet Healthy Longev. 2, e362-e370.   DOI
24 Lee, D.G., Kim, H.S., Lee, Y.S., Kim, S., Cha, S.Y., Ota, I., Kim, N.H., Cha, Y.H., Yang, D.H., Lee, Y., et al. (2014). Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat. Commun. 5, 4423.
25 Lee, Y., Kim, N.H., Cho, E.S., Yang, J.H., Cha, Y.H., Kang, H.E., Yun, J.S., Cho, S.B., Lee, S.H., Paclikova, P., et al. (2018). Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat. Commun. 9, 2301.
26 Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J.K., Yates, J.R., 3rd, Villa, E., Cleveland, D.W., and Corbett, K.D. (2021). The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502.
27 Meyer, B., Drosten, C., and Muller, M.A. (2014). Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 194, 175-183.   DOI
28 Peng, T.Y., Lee, K.R., and Tarn, W.Y. (2008). Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. FEBS J. 275, 4152-4163.   DOI
29 Shan, D., Johnson, J.M., Fernandes, S.C., Suib, H., Hwang, S., Wuelfing, D., Mendes, M., Holdridge, M., Burke, E.M., Beauregard, K., et al. (2021). N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat. Commun. 12, 1931.
30 Shah, M. and Woo, H.G. (2021). Molecular perspectives of SARS-CoV-2: pathology, immune evasion, and therapeutic interventions. Mol. Cells 44, 408-421.   DOI
31 Surjit, M., Liu, B., Chow, V.T., and Lal, S.K. (2006). The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 281, 10669-10681.   DOI
32 Syed, A.M., Taha, T.Y., Tabata, T., Chen, I.P., Ciling, A., Khalid, M.M., Sreekumar, B., Chen, P.Y., Hayashi, J.M., Soczek, K.M., et al. (2021). Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science 374, 1626-1632.   DOI
33 Tabibzadeh, A., Esghaei, M., Soltani, S., Yousefi, P., Taherizadeh, M., Safarnezhad Tameshkel, F., Golahdooz, M., Panahi, M., Ajdarkosh, H., Zamani, F., et al. (2021). Evolutionary study of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emerging coronavirus: phylogenetic analysis and literature review. Vet. Med. Sci. 7, 559-571.   DOI
34 Tan, Y.J., Goh, P.Y., Fielding, B.C., Shen, S., Chou, C.F., Fu, J.L., Leong, H.N., Leo, Y.S., Ooi, E.E., Ling, A.E., et al. (2004). Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin. Diagn. Lab. Immunol. 11, 362-371.
35 Tay, M.Z., Poh, C.M., Renia, L., MacAry, P.A., and Ng, L.F.P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363-374.   DOI
36 Wu, C.J., Jan, J.T., Chen, C.M., Hsieh, H.P., Hwang, D.R., Liu, H.W., Liu, C.Y., Huang, H.W., Chen, S.C., Hong, C.F., et al. (2004). Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother. 48, 2693-2696.   DOI
37 Wang, H.Y., Juo, L.I., Lin, Y.T., Hsiao, M., Lin, J.T., Tsai, C.H., Tzeng, Y.H., Chuang, Y.C., Chang, N.S., Yang, C.N., et al. (2012). WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3β. Cell Death Differ. 19, 1049-1059.   DOI
38 Wu, C.H., Chen, P.J., and Yeh, S.H. (2014). Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription. Cell Host Microbe 16, 462-472.   DOI
39 Wu, C.H., Yeh, S.H., Tsay, Y.G., Shieh, Y.H., Kao, C.L., Chen, Y.S., Wang, S.H., Kuo, T.J., Chen, D.S., and Chen, P.J. (2009). Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J. Biol. Chem. 284, 5229-5239.   DOI
40 Yamamoto, H., Kishida, S., Kishida, M., Ikeda, S., Takada, S., and Kikuchi, A. (1999). Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J. Biol. Chem. 274, 10681-10684.   DOI
41 Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R., and Weiss, S.J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J. Biol. Chem. 280, 11740-11748.   DOI
42 Yook, J.I., Li, X.Y., Ota, I., Hu, C., Kim, H.S., Kim, N.H., Cha, S.Y., Ryu, J.K., Choi, Y.J., Kim, J., et al. (2006). A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8, 1398-1406.   DOI
43 Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.   DOI