• Title/Summary/Keyword: architectural model

Search Result 1,891, Processing Time 0.03 seconds

A Study on the Characteristics of Sonication Combined with UV in the Degradation of Phenol (초음파와 UV에 의한 페놀 분해 특성에 관한 연구)

  • Kim, Seong-Keun;Son, Hyun-Seok;Im, Jong-Kwon;Khim, Jee-Hyeong;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.649-655
    • /
    • 2010
  • This study investigated the degradation of phenol using sonication and/or UV-C. The effects of frequency, temperature, pH in solution, argon purging, with UV intensity were estimated in sonication-only, UV-only, and the combined reaction of sonication with UV. The optimum condition for degrading phenol in the sonication-only reaction was 35 kHz, $5^{\circ}C$, and pH 4. As this condition approximately 30% degradation of phenol was achieved within 360 min. However, phenol in the UV-only at $19.3\;mw/cm^2$ under the same condition was completely degraded within 60 min. In the combined system of sonication with UV, the degradation of phenol was well fitted to first-order rate model, and phenol was completely degraded within 360 min and 45 min at UV intensity of $7.6\;mW/cm^2$($17.3{\times}10^{-3}\;min^{-1}$) and $19.3\;mW/cm^2$($138.1{\times}10^{-3}\;min^{-1}$), respectively. Adding methanol, as a radical scavenger, in the phenol degradation in the sonication reaction indicates that OH radical is a major factor in the degradation of phenol. The order of degradation efficiencies of phenol was in the order of as follows; combined reaction of sonication with UV > UV-only > sonication-only.

The Evaluation of the Purchase Social Housing on the Characteristics of Location and Housing in Busan (부산지역 매입임대주택의 입지 및 주택 내·외부 특성에 따른 주거평가 분석)

  • Choi, Yeol;Park, Sung Ho;Ha, Kyu-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1307-1315
    • /
    • 2014
  • This study aims to analysis of determinants of the residents satisfaction of purchased rental housing and currently being implemented policy of supporting low-income families are empirically evaluated through the residential evaluation of purchased rental housing residents. Purchased rental housing users are possible to live in currently residing community consistently, have advantages for fewer problems of the phenomenon of social isolation, exclusion and preventing slumism of low-income families, are expected to increase in the future. First of all, the characteristics of residential environment, housing expenses and a head of household were examined for the residential environment evaluation of the residents of purchased rental housing, on the basis of this, the characteristics of internal and external house and residential location are examined each for the determinants of the residential environment satisfaction of purchased rental housing. The variables that affect residential satisfaction according to residential location are public facilities, educational facilities and welfare facilities respectively. In particular, the higher the satisfaction of access to welfare facilities, the higher the satisfaction of residential location of purchased rental housing was analyzed. The variables affecting the residential satisfaction according to the internal and external characteristics of house are significant in window status, cracking, heating facilities, housing scale and management.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

A Study of the Establishment of Framework for Information Exchange based on IFC Model in Domestic Collaborative Design Environment (국내 협업 설계 환경에서의 IFC기반 정보 교환 프레임워크 구축에 관한 연구)

  • Shin, Joonghwan;Kwon, Soonwook;Lee, Kyuhyup;Choi, Sangduck;Kim, Jinman
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • As recent multilateral collaboration design system has been advanced, BIM based data exchange is a key factor for successful next generation building project. Even though many studies have been trying to set up a data compatibility system for collaboration, There are still a lot of problem in data exchange between design and engineering phase. Therefore, In this study, we analysis causes of problem for information exchange and suggest a IFC based Information exchange framework for improving BIM based design collaboration environment. In order to find out problems that hinder establishment of advanced open BIM information exchange, proper analysis about transition of process from current and to-be BIM based design collaboration process is important, at first. From analysis of main obstacles to information exchange, this research suggests solution plan using open API and IFC based BIM collaboration supporting system. The suggested open API solution named Integrity feedback system perform a role making up for weak point derived from IFC based data exchange. And main system suggestion about framework for IFC based information exchange reflect technological system support, requirement of function for collaboration including API/BCF plug-in.

Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent (초지연제 및 플라이애쉬를 사용한 콘크리트의 응결시간 예측)

  • Han, Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.759-767
    • /
    • 2006
  • This paper presents a method to estimate the setting time of concrete using super retarding agent(SRA) and fly ash(FA) under various curing temperature conditions by applying maturity based on equivalent age. To estimate setting time, the equivalent age using apparent activation energy($E_a$) was applied. Increasing SRA content and decreasing curing temperature leads to retard initial and final set markedly. $E_a$ at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. It is estimated to be from $24{\sim}35KJ/mol$ in all mixtures, which is smaller than that of conventional mixture ranging from $30{\sim}50KJ/mol$. Based on the application of $E_a$ to Freisleben-Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and SRA contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing SRA. A high correlation between estimated setting time and measured setting time is observed. Multi-regression model to determine appropriate dosage of SRA reflecting FA contents and equivalent age was provided. Thus, the setting time estimation method studied herein can be applicable to the concrete containing SRA and FA in construction fields.

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

Sensitivity Analysis of Sediment Transport Scaling Factors on Cross-Shore Beach Profile Changes using Deflt3D (해빈 단면의 지형변화 모의를 위한 Delft3D 내의 표사이동 관련 매개변수의 민감도 분석)

  • Yang, Jung-A;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.493-500
    • /
    • 2019
  • In this study, sensitivity analysis of sediment transport scaling factors in Delft3D-Morphology was performed to examine the effect those parameters on simulation results of cross-shore profile changes. For numerical experiments, one-year wave time series data which were observed in 2018 on the Maengbang coast in Gangwon prefecture were applied as external force. Bathymetric data observed in January and October of the same year were used as initial bathymetric data and annual bathymetric change data, respectively. The simulation performance of the model was evaluated based on the Brier Skill Score index for each part by dividing an arbitrary cross section within the calculation domain into the onshore and offshore parts. As a result, it was found thet the fBED variable has a slight effect on the simulation results. The fBEDW and fSUSW variables show good simulation performance in onshore part when the value less than 0.5 is applied and vice versa. Among the experimental conditions, the optimal combinations of variables are fBED = 1.0, fBEDW = 1.0, fSUSW = 0.1 for the onshore region and fBED = 1.0, fBEDW = 1.0, fSUSW = 0.5 for the offshore region. However, since these combinations were derived based on the observation data on Maengbang beach in 2018, users should be careful when applying those results to other areas.

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

Restoration of the bell pavilion of King Song-Dok Bell with a view of its acoustical characteristics (성덕대왕 신종의 음향적 특성을 고려한 종각복원의 고찰)

  • Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.378-386
    • /
    • 2018
  • The present paper suggests the original form of the bell pavilion for the King Song-Dok bell which is one of the precious national treasure of Korea. In order to this, many literatures were reviewed including both historical and acoustical references. As the results, the model of the bell pavilion for the King Song-Dok bell is suggested as follows considering acoustical characteristics of the King Song-Dok bell and the traditional Korean bells ; 1) The bell pavilion has the rumbling puddle beneath the bell on the ground floor for resonance of sound 2) Many lumbers are used for columns and beams rather than boards since natural frequencies of the bell are 64 Hz and 168 Hz so that the sound absorption of the low frequency sound may not be occurred. 3) Only some boards may be used for the area between upper and middle molding of lintel in order to prevent of direct sunlight and sea breeze since this type of structure were used for bell pavilion of the same age. 4) Square form with the odd number of 3 or 5 Kans is adopted for bell pavilion considering the weight and the size of the bell which had been used traditionally 5) Finally, half-hipped structure is used for the roof of the bell pavilion which was the predominant form of the age.

A Study on Rotation Behavior of High Strength Steel Endplate Connections under Fire (화재시 고강도강 엔드플레이트 접합부의 회전 거동에 관한 연구)

  • Shin, Su-Min;Lee, Chy-Hyoung;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.35-43
    • /
    • 2016
  • In order to understand rotation behavior of high strength steel endplate connections under fire, this study is compared with existing studies conducted using FEA program. Eurocode 3 presents the three failure modes according to the prediction of bending resistance moment. The parameters of analysis model are temperature, thickness and steel materials of endplate. The rotation stiffness, and bending resistance moment are analyzed according to the parameters. The change of rotation stiffness and bending resistance moment are analyzed about the parameters, regression equations are suggested the change of high strength steel endplate connections. Consequently, the regression equations were proposed as the linear and quadratic equation. The moment ratio of high strength steel under fire was more reduced than the carbon steel, and was small effect about the thickness. When the high strength steel under fire was compared with at ambient temperature, the slope of initial rotation stiffness reduced, the increment ratio of moment was slow, and the change of plastic rotation stiffness wasn't effect by the thickness increase.