• Title/Summary/Keyword: arches

Search Result 355, Processing Time 0.032 seconds

Conventional and digital impressions for complete-arch implant-supported fixed prostheses: time, implant quantity effect and patient satisfaction

  • Pereira, Ana Larisse Carneiro;Medeiros, Vitoria Ramos;Campos, Maria de Fatima Trindade Pinto;Medeiros, Annie Karoline Bezerra de;Yilmaz, Burak;Carreiro, Adriana da Fonte Porto
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.212-222
    • /
    • 2022
  • PURPOSE. To evaluate and compare the effect of impression type (conventional vs digital) and the number of implants on the time from the impressions to the generation of working casts of mandibular implant-supported fixed completearch frameworks, as well as on patient satisfaction. MATERIALS AND METHODS. 17 participants, 3 or 4 implants, received 2 types of digital impression methods (DI) and conventional (CI). In DI, two techniques were performed: scanning with the scan bodies (SC) and scanning with a device attached to the scan bodies (SD) (BR 10 2019 026265 6). In CI, the making of a solid index (SI) and open-tray impression (OT) were used. The outcomes were used to evaluate the time and the participant satisfaction with conventional and digital impressions. The time was evaluated through the timing of the time obtained in the workflow in the conventional and digital impression. The effect of the number of implants on time was also assessed. Satisfaction was assessed through a questionnaire based on seven. The Wilcoxon test used to identify the statistical difference between the groups in terms of time. The Mann-Whitney test was used to analyze the relationship between the time and the number of implants. Fisher's test was used to assess the patient satisfaction (P<.05). RESULTS. The time with DI was shorter than with CI (DI, $\tilde{x}=02:58$; CI, $\tilde{x}=31:48$) (P<.0001). The arches rehabilitated with 3 implants required shorter digital impression time (3: $\tilde{x}=05:36$; 4: $\tilde{x}=09:16$) (P<.0001). Regarding satisfaction, the DI was more comfortable and pain-free than the CI (P<.005). CONCLUSION. Digital impressions required shorter chair time and had higher patient acceptance than conventional impressions.

Validity of the Nielsen-type hanger arrangement in spatial arch bridges with straight decks

  • Mirian Canovas-Gonzalez;Juan M. Garcia-Guerrero;Juan J. Jorquera-Lucerga
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.51-69
    • /
    • 2023
  • In tied-arch bridges, a properly designed connection between the arch and the deck may become crucial, since the forces in the structure may be significantly reduced. This implies substantial material savings and, consequently, cheaper constructions. The introduction of the Nielsen cable arrangement (composed of V-shaped inclined hangers) in the last century was a milestone because it was able to reduce deflections and bending moments both in the arch and in the deck. So far, the Nielsen cable arrangement has proven to be successful in traditional vertical arch bridges. However, despite its advantages, it has not been widely applied to spatial arch bridges. Thus, this article analyses the difference between the structural behavior of spatial arch bridges with Nielsen-type cable arrangements with respect to those with classical vertical hanger configurations. The main goal is to verify whether the known effectiveness of the Nielsen cable arrangement for classical arch bridges is still preserved when applied to spatial arch bridges. In order to achieve this objective, and as the first part of our study, a set of different all-steel bridges composed of vertical and inclined arches with straight decks have been compared for both cable arrangements. As a major conclusion, for planar vertical arch bridges, the Nielsen-type cable arrangement is always the most effective. In addition, it also seems that, for spatial arch bridges composed of a straight deck and an inclined arch, it still keeps most of its effectiveness as long as the arch is moderately inclined.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

Accuracy and time efficiency of conventional and digital outlining of extensions of denture foundation on preliminary casts

  • Anne Kaline Claudino Ribeiro;Aretha Heitor Verissimo;Rodrigo Falcao Carvalho Porto de Freitas;Rayanna Thayse Florencio Costa;Burak Yilmaz;Sandra Lucia Dantas de Moraes;Adriana da Fonte Porto Carreiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.3
    • /
    • pp.139-150
    • /
    • 2024
  • PURPOSE. The purpose of this diagnostic study was to assess the accuracy and time efficiency of a digital method to draw the denture foundation extension outline on preliminary casts compared with the conventional technique. MATERIALS AND METHODS. A total of 28 preliminary edentulous casts with no anatomical landmarks were digitized using a laboratory scanner. The outlining of the entire basal seat of the denture was performed on preliminary casts and digitized. Casts with no extension outline were digitized and outlines were drawn using software (DWOS, Straumann). The accuracy of the extension outlined between both techniques was evaluated in the software (GOM Inspect; GOM GmbH) by file superimposition. Specificity and sensitivity tests were applied to measure accuracy. The paired t-test (95% CI) was used to compare the mean total area and the working time. RESULTS. The accuracy ranged from 0.57 to 0.92. The buccal and labial frenulum showed a lower value in the maxilla (0.57); while the area between the retromolar pad and buccal frenulum (0.64) showed a lower score in the mandible. The maxillary denture foundation and the working time for both arches were significantly longer for the digital method (P < .001). CONCLUSION. The denture foundation extension outline exhibited a sufficiently excellent accuracy for the digital method, except for the maxillary anterior region. However, the digital method required a longer working time.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

Palatal vault configuration and its influence on intraoral scan time and accuracy in completely edentulous arches: a prospective clinical study

  • Dina Mohamed Ahmed Elawady;Wafaa Ibrahim Ibrahim;Radwa Gamal Ghanem;Reham Bassuni Osman
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.4
    • /
    • pp.201-211
    • /
    • 2024
  • PURPOSE. The aim of this prospective clinical study was to compare the influence of palatal vault forms on accuracy and speed of intraoral (IO) scans in completely edentulous cases. MATERIALS AND METHODS. Based on the palatal vault form, participants were divided into three equal groups (n = 10 each); Class I: moderate; Class II: deep; Class III: flat palatal vault. A reference model was created for each patient using polyvinylsiloxane impression material. The poured models were digitized using an extraoral scanner. The resultant data were imported as a solid CAD file into 3D analysis software (GOM Inspect 2018; Gom GmbH, Braunschweig, Germany) and aligned using the software's coordinate system to determine its X, Y, and Z axes. Five digital impressions (DIs) of maxilla were captured for each patient using an intraoral scanner (TRIOS; 3Shape A/S, Copenhagen, Denmark) and the resultant Standard Tessellation Language (STL) scan files served as test models. Trueness was evaluated by calculating arithmetic mean deviation (AMD) of the vault area between reference and test files while precision was evaluated by calculating AMD between captured scans to measure repeatability of scan acquisition. The scan time taken for each participant was also recorded. RESULTS. There was no significant difference in trueness and precision among the groups (P = .806 and .950, respectively). Average scan time for Class I and III palatal vaults was 1 min 13 seconds and 1 min 37 seconds, respectively, while class II deep palatal vaults showed the highest scan time of 5 mins. CONCLUSION. Palatal vault form in edentulous cases has an influence on scan time. However, it does not have a substantial impact on the accuracy of the acquired scans.

Effect of reference objects on the accuracy of digital implant impressions in partially edentulous arches

  • Vygandas Rutkunas;Darius Jegelevicius;Justinas Pletkus;Liudas Auskalnis;Mykolas Akulauskas;Tan Firat Eyuboglu;Mutlu Ozcan;Agne Gedrimiene
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.5
    • /
    • pp.302-310
    • /
    • 2024
  • PURPOSE. This study assesses the impact of additional reference objects (RO) on the trueness and precision of distance and angle measurements between scan bodies in digital scans with four different intraoral scanners (IOS) in partially edentulous models. MATERIALS AND METHODS. Maxilla models (Frasaco, Frasaco GmbH, Tettnang, Germany) with one (3-U) and two (4-U) missing posterior teeth were 3D printed and fitted with dental implants and scan bodies. Four intraoral scanners (Primescan (Dentsply Sirona, Charlotte, NC, USA) (PS), Trios 3 (3Shape) (T3), Trios 4 (3Shape) (T4), and CS3600 (Carestream Dentistry) (CS)) captured digital implant impressions with and without additional RO. Scans were aligned and assessed for distance and angulation measurements between scan bodies. Statistical analyses compared trueness and precision across model groups using the Student t-test and Welch's ANOVA. RESULTS. CS consistently showed the highest distance values across IOS devices in both the 4-U and 3-U models (P < .05), both with and without RO. The distance values were not considerably affected by the presence of RO (P > .05), except for a few isolated cases in the PS and CS groups of 3-U models. When measuring angles, CS usually showed greater values than the other IOS devices, especially when RO was present both in the 4-U and 3-U variants (P < .05). CONCLUSION. The influence of additional reference objects on accuracy varies with different scanner types, irrespective of edentulous area length.

Clinical outcomes of implant supported fixed-hybrid prostheses in the fully edentulous arches (완전무치악 환자에서 고정성 임플란트 하이브리드 수복물의 임상성적)

  • Huh, Yoon-Hyuk;Yi, Yang-Jin;Kwon, Min-Jung;Kim, Young-Kyun;Cha, Min-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate clinical outcomes of implant supported fixed-hybrid prostheses (FHP) in the fully edentulous arches. Materials and methods: Patients in this retrospective study were restored with fixed-hybrid prostheses supported by 4 to 6 implants and functioned more than 1 year of loading. Outcome measures were marginal bone change of implant related with sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients, tilting of posterior implant by Mann- Whitney U test and cantilever length of superstructure by regression analysis, and complication rates. Significance level was set P<.05. Results: A total number of 84 implants (16 restorations) placed in 16 patients were observed for 28 months and mean marginal bone loss was $0.53{\pm}0.39mm$. There were no differences of marginal bone loss according to sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients (P>.05), and cantilever length was not significantly related with a marginal bone loss of implant next to cantilever (P>.05). Complication was shown in 11 patients and veneer fracture and dislodging of artificial teeth were most prevalent. Conclusion: Within the limitations of this study, although marginal bone loss of FHP was very little, complication rates were high. Irrespective of tilting of most posterior implants, marginal bone loss of most posterior implants next to cantilever was less than those of the other implants positioned anteriorly. Cantilever length (<17 mm) did not affect a marginal bone loss of most posterior implants.

Generic Characters of Vertebrae and Pterygiophore of the Fishes of the Family Tetraodontidae (Teleostei: Tetraodontiformes) (참복과(복어목) 어류의 속별 척추골과 담기골 특징)

  • HAN Kyeong-Ho;KIM Yong Uk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.645-653
    • /
    • 1998
  • Twenty seven species of pufferfishes (family Tetraoaontidae) have been examined to find their generic characters based on vertebrae and pterygiophore characters of specimens collected in 20 localities along the coast of Korea from March, 1991 to March, 1994. It was divided by 3 groups based on vertebrae number as follow : the genera Lagocephalus, Pleurancanthus, Spheoides, Arothron, Chelonoeon and Canthigaster have 17$\~$19 vertebrae, genera Ephippion, Boesemanichthys and Feroxodon have 20 vertebrae, and genus Takifugu have 19$\~$25 vertebrae, The number of vertebrae ranged from 17 to 25 with the maximum of 25 in Takifugu obscurus. The modal number of vertebrae in Lagocephalus is 17 (L. lunaris), 18 (L. inermis), and 19 (L. gloveri, L. wheeleri, L. larigatus), with the lower number more specialized. Paired neural spines appear at number of the 1st$\~$5th vertebrae in Takifugu pardalis, Takifugu obscurus and at number of the 1 st$\~$4 th vertebrae in the other species and genera. All of the species of Lagocephalus and Pleurancanthus have dorsal and ventral pterygiophores processes, and flat-shaped epural, while none of the abdominal vertebrae processes complete haemal arches. The neural and haemal spines of the last few caudal vertebrae aye shorter in Pleurancanthus than in the other genera, associated with the depressed caudal peduncle. The genus Canthigaster is distinguished the first pterygiophores of the dorsal and ventral fins is always much larger than the others genera. Based on the haemal arches and spines of the abdominal vertebrae, genus Canthigaster has different characters from the other genera of the family Tetraodontidae.

  • PDF