• 제목/요약/키워드: arc-discharge

검색결과 371건 처리시간 0.03초

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

비정질 다이아몬드 코팅을 위한 자장여과 아크소스의 동작 특성에 관한 연구 (Operation Characteristic of Filtered Vacuum Arc Source for Amorphous Diamond Coating)

  • 김종국;이구현
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.147-157
    • /
    • 2000
  • The filtered vacuum arc source (FVAS), which is adopted by magnetic filtering methode to remove the macro-particle in vacuum arc plasma, was composed of a torus structure with bending angle of 60 degree. The radius of torus was 266 mm, the radius of plasma duct was 80 mm and the total length was 600 mm. The magnet parts were consisted of one permanent magnet, one magnetic yoke and five solenoid magnets. The plasma duct was electrically isolated from the ground so that a bias voltage could be applied. The baffles inside plasma duct were installed in order to prevent the recoil effect of macro-particles. Graphite was used as the cathode material to coat the amorphic diamond film and its diameter was 80 mm. The amorphic diamond film attracts much attention due to its excellent mechanical, optical and tribological properties suitable for wide range of applications. The effects of solenoid magnet in plasma extraction were studied by computer simulation and experiment using Taguchi's method. The source and extraction magnet affected the arc stabilization. The extraction beam current was maximized with low value of the source magnet current and high value of the filtering magnet current. Optimum deposition condition was obtained when the currents of arc discharge, source, extraction, bending, deflection and outlet magnet were 30 A, 1 A, 3 A, 5 A, and 5 A, respectively.

  • PDF

저압배선계통에서 직렬아크의 검출에 관한 연구 (A Study on the Series Arc Detection in Low-voltage Wiring Systems)

  • 김일권;박대원;최수연;박찬용;김황국;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.182-187
    • /
    • 2008
  • This paper dealt with the detection algorithm of series arcing, which is a cause of electric fires in low-voltage wiring systems. To find the distinguished electrical features of series arc, we simulated series arcing by the arc generator specified in UL1699. An electric heater, an inverter-controlled vacuum cleaner, and a phase-controlled incandescent lamp were used as loads to generate series arcing. A high-pass filter (HPF) with the low cut-off frequency of 3 kHz at -3 dB was fabricated and applied to separate the series arc signal from the AC voltage source. The experiment showed that the high frequency signal generates randomly during series arcing, and the phase-controlled incandescent lamp produces high frequency pulses even in normal state. In this case, the magnitude, the width, and the randomness of high frequency signal should be analyzed to estimate series arcing precisely.

플라즈마 아크 방전법에 의한 Bi-Sb-Te 나노 열전분말 제조 (Synthesis of Bi-Sb-Te Thermoelectric Nanopowder by the Plasma Arc Discharge Process)

  • 이길근;이동열;하국현
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.352-358
    • /
    • 2008
  • The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the $Bi_{0.5}Sb_{1.5}Te_{3}$, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.

수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구 (Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction)

  • 김동수;안종빈;장세훈;정국채;김종우;최철진
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

슬라이딩아크 방전과 코로나 방전의 복합공정을 통한 유해물질 처리효율 개선에 관한 연구 (A Study on Combined Processes of Sliding Arc Plasma and Corona Dielectric Barrier Discharge for Improve the Efficiency Treatment of Harmful Substance)

  • 권우택;이우식
    • 한국화재소방학회논문지
    • /
    • 제28권6호
    • /
    • pp.108-113
    • /
    • 2014
  • 유해물질처리를 효율적으로 개선하기 위해 슬라이딩아크방전(sliding arc plasma)과 corona dielectric barrier discharge(CDBD공정)의 복합공정을 이용하였다. 이장치는 OH 라디칼과 음이온을 생성하여 강력한 산화력으로 탈취 및 살균 효과를 가진다. 실험결과 SAP 반응기의 크기를 80 A를 50 A로 축소하여도 유해물질의 농도는 큰 변화가 없는 것으로 나타나 반응기의 규모를 최소화할 수 있을 것으로 판단된다. 그리고 CDBD 반응기에서 생성된 음이온과 오존은 유해물질과 반응한 후 음이온은 510,000 ppb에서 470 ppb, 오존은 98 ppb에서 22 ppb로 낮아짐을 확인하였다. 또한 플라즈마 발생장치의 안정성 및 내구성이 우수한 것으로 판단되었다. 따라서 본 연구를 통하여 향후 플라즈마복합공정을 이용하여 실내공기중에 존재하는 유해물질 제거를 효율적으로 할 수 있을 것으로 생각된다.

플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성 (Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process)

  • 이정구;;;최철진
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

질환탄소 박막 증착 시 고전압 방전 플라즈마에 가한 자장의 영향 (Influence of a Magnetic Field on High voltage Discharge Plasma Area for Carbon Nitride Film Deposition)

  • 김종일;배선기
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-189
    • /
    • 2002
  • Carbon nitride films were grown on Si (100) substrate by a laser-electric discharge method with/without a magnetic field assistance. The magnetic field leads to vapor plume plasma expending upon the ambient arc discharge plasma area. Influence of the magnetic field has resulted in increased of a crystallite size int he films due to bombardment (heating) of Si substrates by energetic carbon and nitrogen species generated during cyclotron motion of electrons in the discharge zone. The surface morphology of the films with a deposition time of 2 hours was studied using a scanning electron microscopy (SEM). In order to determine the structural crystalline parameters, X-ray diffraction (XRD) was used to analysis the grown films.