Browse > Article
http://dx.doi.org/10.4491/eer.2005.10.3.144

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION  

Shin, Won-Tae (Marine Environment Division, Ministry of Marine Affairs and Fisheries)
Sung, Nak-Chang (Department of Environmental Engineering, Dong-A University)
Publication Information
Environmental Engineering Research / v.10, no.3, 2005 , pp. 144-154 More about this Journal
Abstract
The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.
Keywords
Ultrapure water; Corona discharge; Ozonation; Radical species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. L. Yue, 'Modeling of Kinetics and Reactor for Water Purification by PhotoOxidation,' Chem. Eng. Sci., 48, 1-11 (1993)   DOI   ScienceOn
2 B. Blume, 'Preparing Ultrapure Water,' Chem. Eng. Prog., 83, 55-57 (1987)
3 R. A. Govemal, 'Ultrapure Water: A Battle Every Step of the Way,' Sernicond. Int., 17, 176-178 (1994)
4 T. Ikeda, R. Muragishi, R. Bairinji, and T. Uemura, 'Advanced Reverse Osmosis Membrane Modules for Novel Ultrapure Water Production Process,' Desalination, 98, 391-400 (1994)   DOI   ScienceOn
5 K. Li, I. Chua, W. J. Ng, and W. K. Teo, 'Removal of Dissolved Oxygen in Ultrapure Water Production Using a Membrane Reactor,' Chem. Eng. Sci., 50, 3547-3556 (1995)   DOI   ScienceOn
6 C. Calmon, 'Recent Developments in Water Treatment by Ion Exchange,' React. Polym., 4, 131-146 (1986)
7 T. Isagawa, M. Kogure, T. Futatsuki, and T. Ohmi, 'Organic Adsorption onto Si Wafer Surface and Their Removal Using Ozonized Ultrapure Water for Semiconductor Manufacturing,' In Proceedings of the Annual Semiconductor Pure Water and Chemicals Conference; Balazs Analytical Laboratory: Sunnyvale, CA, pp. 117-139 (1993)
8 J. F. W. Parker, G. F. Greaves, and H. V. Smith, 'The Effect of Ozone on the Viability of Cryptosporidium Parvum Oocysts and a Comparison of Experimental Methods,' Water Sci. Technol., 27, 93-96 (1993)
9 D. G. Korich, J. R. Mead, M. S. Madore, N. A. Sinclair, and C. R. Sterling, 'Effects of Ozone, Chlorine Dioxide, Chlorine, and Monochloroamine on Cryptosporidium Parvum Oocyst Viability,' Appl. Environ. Microbiol., 56, 1423-1429 (1990)
10 K. Kawada, J. Tanaka, N. Uchiyama, H. Yagi, Y. Toriyama, and A. Uemka, 'Nonionic Silica Removal Using Ozone-UV Treatment for Semiconductor Ultrapure Water Systems,' In Proceedings of the Annual Semiconductor Pure Water and Chemicals Conference; Balazs Analytical Laboratory: Sunnyvale, CA, pp. 1-20 (1994)
11 A. A. Joshi, B. R. Locke, P. Arce, and W. C. Finney, 'Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution,' J. Hazard. Mater., 41, 3-30 (1995)   DOI   ScienceOn
12 J.-S. Chang, P. A. Lawless, and T. Yamamoto, 'Corona Discharge Processes,' IEEE Trans. Plasma Sci., 19, 1152-1166 (1991)   DOI   ScienceOn
13 W.-T. Shin, S. Yiacoumi, and C. Tsouris, 'Experiments on Electrostatic Dispersion of Air in Water,' Ind. Eng. Chem. Res., 36, 3647-3655 (1997)   DOI   ScienceOn
14 C. Tsouris, D. W. DePaoli, J. Q. Feng, O. A. Basaran, and T. C. Scott, 'Electrostatic Spraying of Nonconductive Fluids into Conductive Fluids,' AIChE J., 40, 1920-1923 (1994)   DOI   ScienceOn
15 C. Tsouris, D. W. DePaoli, J. Q. Feng, and T. C. Scott, 'An Experimental Investigation of Electrostatic Spraying of Nonconductive Fluids into Conductive Fluids,' Ind. Eng. Chem. Res., 34, 1394-1403 (1995)   DOI   ScienceOn
16 K. Rakness, G. Gordon, B. Langlais, W. Masschelein, N. Matsumoto, Y. Richard, C. M. Robson, and I. Somiya, 'Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator,' Ozone : Sci. Eng., 18, 209-229 (1996)   DOI   ScienceOn
17 C. Tsouris, W.-T. Shin, and S. Yiacoumi, 'Spraying, Pumping, and Mixing of Fluids by Electric Fields,' Can. J. Chem. Eng., 76, 589-598 (1998)   DOI
18 W.-T. Shin, A. Mirmiran, S. Yiacoumi, C. Tsouris, 'Ozonation Using Microbubbles Formed by Electric Fields,' Sep. Purif. Technol., 15, 271-282 (1999)   DOI   ScienceOn
19 K. D. Buchholz and J. Pawliszyn, 'Determination of Phenols by Solid-Phase Microextraction and Gas Chromatographic Analysis,' Environ. Sci. Technol., 27, 2844-2848 (1993)   DOI   ScienceOn
20 D. R. Grymonpra, W. C. Ginney, and B. R. Locke, 'Aqueous-Phase Pulsed Streamer Corona Reactor Using Suspended Activated Carbon Particles for Phenol Oxidation: Model-Data Comparison,' Chem. Eng. Sci., 54,3095-3105 (1999)   DOI   ScienceOn
21 E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II: Stiff and Differential- Algebraic Problems; Springer-Verlag:New York (1987)
22 W. H. Press and S. A. Teukolsky, Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed.; Cambridge: Cambridge University Press (1994)
23 M. Sato, T. Ohgiyama, and J. S. Clements, 'Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-Voltage Discharge in Water,' IEEE Trans. Ind. Appl., 32, 106-112 (1996)   DOI   ScienceOn
24 J. S. Clements, M. Sato, and R. H. Davis, 'Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water,' IEEE Trans. Ind. Appl., IA-23, 224-235 (1987)   DOI
25 M. D. Gurol and P. C. Singer, 'Dynamics of the Ozonation of Phenol,' Water Res., 17, 1163-1171 (1983)   DOI   ScienceOn
26 G. Herzberg, Molecular Spectra and Molecular Structure; Van Nostrand: New York (1979)
27 T. Ohmi, T. Isagawa, T. Imaoka, and I. Sugiyama, 'Ozone Decomposition in Ultrapure Water and Continuous Ozone Sterilization for a Semiconductor Ultrapure Water System,' J. Electrochem. Soc., 139, 3336-3345 (1992)   DOI
28 M. Miyamoto, T. Tatsuno, and Y. Ohta, 'Advanced Ultrapure Water by HF Addition,' J. Electrochem. Soc., 140, 2546-2549 (1993)   DOI
29 B. Sun, M. Sato, A. Harano, and J. S. Clements, 'Non-Uniform Pulse DischargeInduced Radical Production In Distilled Water,' J. Electrostat., 43, 115-126 (1998)   DOI   ScienceOn