• Title/Summary/Keyword: arc detection

Search Result 198, Processing Time 0.031 seconds

New Machine Condition Diagnosis Method Not Requiring Fault Data Using Continuous Hidden Markov Model (결함 데이터를 필요로 하지 않는 연속 은닉 마르코프 모델을 이용한 새로운 기계상태 진단 기법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Model based machine condition diagnosis methods are generally using a normal and many failure models which need sufficient data to train the models. However, data, especially for failure modes of interest, is very hard to get in real applications. So their industrial applications are either severely limited or impossible when the failure models cannot be trained. In this paper, continuous hidden Markov model(CHMM) with only a normal model has been suggested as a very promising machine condition diagnosis method which can be easily used for industrial applications. Generally hidden Markov model also uses many pattern models to recognize specific patterns and the recognition results of CHMM show the likelihood trend of models. By observing this likelihood trend of a normal model, it is possible to detect failures. This method has been successively applied to arc weld defect diagnosis. The result shows CHMM's big potential as a machine condition monitoring method.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

Detection of H2S Gas with CuO Nanowire Sensor (산화구리 나노선 센서의 황화수소 감지특성)

  • Lee, Dongsuk;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.238-246
    • /
    • 2015
  • $H_2S$ is a flammable toxic gas that can be produced in plants, mines, and industries and is especially fatal to human body. In this study, CuO nanowire structure with high porosity was fabricated by deposition of copper on highly porous singlewall carbon nanotube (SWCNT) template followed by oxidation. The SWCNT template was formed on alumina substrates by the arc-discharge method. The oxidation temperatures for Cu nanowires were varied from 400 to $800^{\circ}C$. The morphology and sensing properties of the CuO nanowire sensor were characterized by FESEM, Raman spectroscopy, XPS, XRD, and currentvoltage examination. The $H_2S$ gas sensing properties were carried out at different operating temperatures using dry air as the carrier gas. The CuO nanowire structure oxidized at $800^{\circ}C$ showed the highest response at the lowest operating temperature of $150^{\circ}C$. The optimum operating temperature was shifted to higher temperature to $300^{\circ}C$ as the oxidation temperature was lowered. The results were discussed based on the mechanisms of the reaction with ionosorbed oxygen and the CuS formation reaction on the surface.

Sulfhydryl Cotton Enrichment Separation-Determination of Silver in Geological Samples by ICP-MS

  • Li, Dan;Zhao, Zhifei;Chu, Qin;Fang, Jindong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3561-3565
    • /
    • 2011
  • A rapid and inexpensive method was developed for the determination of trace silver in geological samples by using sulfhydryl cotton coupled with ICP-MS. The interferences such as $^{90}Zr$, $^{92}Mo$ and $^{93}Nb$ on silver were investigated in detail. Sulfhydryl cotton was found to be an effective adsorbent for separation of interferences for Ag in the solutions. Excellent agreements with the certified values were obtained for all the certified reference materials. The memory effects of Ag by ICP-MS were examined by using different agents, including water, nitric acid, and HCl-thiourea to all standards/samples. The agents also acted as cleansing solutions. A combination of HCl with thiourea gave the minimum memory effect. For comparison of results, a proposed Chinese Geology Survey procedure DC-ARC-AES and a direct determination pretreatment method of ICP-MS (water bath- auqa regia digestion) were studied. Under optimal conditions, the detection limits of our method for $^{107}Ag$ and $^{109}Ag$ were 1.2 ng/g and 1.3 ng/g, which offered much better accuracy for some difficult analysis geological samples such as GBW07604, GBW07605.

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].

The Heating of Cu-oxide and Arc Properties according to Electrical Poor Contact (전기적 불완전 접촉에 따른 동산화물의 발열 및 아크 특성)

  • Kim, Wansu;Park, SangJune;Hwang, DongHyun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • As industry is progressing and standards of living are improved, the demand of electrical energy is expected to grow 8-9% annually. Therefore, the importance of electrical fire prevention technology with the ability of the power supply is being emphasized. According to the statistics of fire in Korea, fire occurred about 45,000 cases annually, and electrical fire possessed about 20%. The electrical fire by poor contact has increased gradually, can be connected as great fire to secondarily induce short circuit and earth fault. Then analysis of heating causes of electrical connections between copper and copper alloy is needed. Also, detection and analysis algorithm of oxide at copper alloy are necessary. In this research, in order to understand the characteristics of oxide growth with rising resistance and heating, it is demonstrated that the oxide at electrical connections can cause fire due to arcing.

A Study on 3-Dimensional Surface Measurement using Confocal Principle (공초점 원리를 이용한 3차원 표면형상 측정에 관한 연구)

  • Kang, Young-June;Song, Dae-Ho;You, Weon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

Analysis results of the Anti-islanding Function for PV-AF System (액티브 필터기능을 갖는 3상 태양광 발전시스템의 단독운전 방지기능의 분석)

  • Kim, Gyeong-Hun;Seo, Hyo-Ryong;Jang, Seong-Jae;Park, Sang-Soo;Park, Min-Won;Yu, In-Keun;Jeon, Jin-Hong;Kim, Seul-Ki;Jo, Chang-Hee;Ahn, Jong-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1085-1086
    • /
    • 2008
  • Shunt active filter can compensate harmonic current of utility results from non-linear loads such as rectifiers, cycloconverters and arc furnaces. It has the same structure as photovoltaic(PV) generation system. So, It was proposed the system that generates PV power and also has active filter function. It is called PV-AF(Photovoltaic and Active Filter) power generation system. Islanding can be occurred in an inverter based dispersed generation system, when the system disconnected from utility and loads are entirely supplied by PV system only. Islanding may result in interference to grid protection devices, equipment damage, and even personnel safety hazards. Therefore, islanding has to be detected and protected. The conventional anti-islanding methods have NDZ(None-Detection Zone) or power quality degradation. But PV-AF power generation system has the function of not only shunt active filter but also anti-islanding method without NDZ. In this paper, a novel anti-islanding method for PV-AF system is proposed and analysed in detail.

  • PDF

Multi-sensor Intelligent Robot (멀티센서 스마트 로보트)

  • Jang, Jong-Hwan;Kim, Yong-Ho
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • A robotically assisted field material handling system designed for loading and unloading of a planar pallet with a forklift in unstructured field environment is presented. The system uses combined acoustic/visual sensing data to define the position/orientation of the pallet and to determine the specific locations of the two slots of the pallet, so that the forklift can move close to the slot and engage it for transport. In order to reduce the complexity of the material handling operation, we have developed a method based on the integration of 2-D range data of Poraloid ultrasonic sensor along with 2-D visual data of an optical camera. Data obtained from the two separate sources complements each other and is used in an efficient algorithm to control this robotically assisted field material handling system . Range data obtained from two linear scannings is used to determine the pan and tilt angles of a pallet using least mean square method. Then 2-D visual data is used to determine the swing angle and engagement location of a pallet by using edge detection and Hough transform techniques. The limitations of the pan and tilt orientation to be determined arc discussed. The system developed is evaluated through the hardware and software implementation. The experimental results are presented.

  • PDF