• Title/Summary/Keyword: arbitrary waveform

Search Result 49, Processing Time 0.026 seconds

Generation of Wavelet-Based Optimal Non-Binary Spreading Code Sequences for CDMA Communication (CDMA 통신을 위한 Wavelet,기저 최적 비이원 확산부호계열 발생)

  • 이정재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.511-517
    • /
    • 1998
  • In this paper a new technique to generate spreading code sequences in the CDMA communication is introduced. It is an effective method to generate optimal code sequences using the orthogonality of wavelet packet basis set of subspaces. With a three-stage Quadrature Mirror Filter(QMF), generation of optimal code sequences has been demonstrated. Since these generated optimal code sequences are non-binary and have an arbitrary waveform which is different from that of the conventional PN-based Gold code sequences, a strong security against the intended interceptor is feasible. Encouraging good correlation properties are also achieved with this new method.

  • PDF

Modeling of Wideband DS-SS Signaling over Multipath Fading Channels

  • Lee, Chankil;Jeon, Youngsik;Lyu, Deuk-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.24-31
    • /
    • 1997
  • A mobile propagation characteristics for wideband DS-SS (Direct Sequence-Spectrum) signal is presented. Existing narrowband model is extended for the wideband pulse with an arbitrary shape. The received DS-SS signal in the frequency domain is the transfer function of the propagation channel weighted by the inverse Fourier transform. In this proposed method, received signal spectral density, instantaneous waveform, and Doppler spectrum of DS-SS signal via either Rayleigh of Rician channel can be obtained easily. Simulation results match well with both simulated theoretical fading statistics and classical theory. As expected, the extraction of chip timing in Rician fading shown to be more tractable than Rayleigh fading.

  • PDF

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System using the PXI Modules (PXI모듈을 이용한 랩뷰 기반 시간-주파수 영역 반사파 실시간 계측 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.336-338
    • /
    • 2006
  • One of the important topics concerning the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detection and estimation of the fault on a wiring/cable. The purpose of this paper is to implement a Labview based TFDR Real Time system though the instruments of PCI extensions for Instrumentation(PXI). The TFDR Real Time system consists of the five parts: Reference signal design, signal generation, signal acquisition, algorithm execution, results diplay part. In the signal generation and acquisition parts we adopt the Arbitrary Waveform Generator(AWG) and Digital Storage Oscilloscope(DSO) PXI modules which offer commonality, compatibility and easy integration at low cost. And execution of the PXI modules not only is controlled by the Labview programing but also the total system process is executed by the Labview application software.

  • PDF

Co-Simulation for Systematic and Statistical Correction of Multi-Digital-to-Analog-Convertor Systems

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • In this paper, a systematic and statistical calibration technique was implemented to calibrate a high-speed signal converting system containing multiple digital-to-analog converters (DACs). The systematic error (especially the imbalance between DACs) in the current combining network of the multi-DAC system was modeled and corrected by calculating the path coefficients for individual DACs with wideband reference signals. Furthermore, by applying a Kalman filter to suppress noise from quantization and clock jitter, accurate coefficients with minimum noise were identified. For correcting an arbitrary waveform generator with two DACs, a co-simulation platform was implemented to estimate the system degradation and its corrected performance. Simulation results showed that after correction with 4.8 Gbps QAM signal, the signal-to-noise-ratio improved by approximately 4.5 dB and the error-vector-magnitude improved from 4.1% to 1.12% over 0.96 GHz bandwidth.

Learning Model and Application of New Preceding Layer Driven MLP Neural Network (새로운 Preceding Layer Driven MLP 신경회로망의 학습 모델과 그 응용)

  • 한효진;김동훈;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.27-37
    • /
    • 1991
  • In this paper, the novel PLD (Preceding Layer Driven) MLP (Multi Layer Perceptron) neural network model and its learning algorithm is described. This learning algorithm is different from the conventional. This integer weights and hard limit function are used for synaptic weight values and activation function, respectively. The entire learning process is performed by layer-by-layer method. the number of layers can be varied with difficulty of training data. Since the synaptic weight values are integers, the synapse circuit can be easily implemented with CMOS. PLD MLP neural network was applied to English Characters, arbitrary waveform generation and spiral problem.

  • PDF

Reducing PAPR for OFDM system by using Pulse-shping (OFDM 시스템에서 Pulse-shaping을 이용한 PAPR의 감소 방안)

  • 권혁일;양윤기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.263-266
    • /
    • 2002
  • Many methods have been Proposed to reduce the PAPR of the OFDM signal. Among them a method that uses the time waveform of the different sub-carriers. The method is referred to as pulse shaping and it works with arbitrary number of sub-carriers and my type of base-band linear modulation. It has been shown, using this technique, that it is possible to design a set of time waveforms that reduce the PAPR of the OFDM transmitted signal and improve its power spectrum simultaneously. In this paper, we investigate the effect of some of these sets of time waveforms on the OFDM system performance in terms of Bit Error Rate (BER).

  • PDF

Testing and Self Calibration of RF Circuit using MEMS Switches

  • Kannan, Sukeshwar;Kim, Bruce;Noh, Seok-Ho;Park, Se-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.882-885
    • /
    • 2011
  • This paper presents testing and self-calibration of RF circuits using MEMS switches to identify process-related defects and out of specification circuits. We have developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated using an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. This test stimulus is provided as input to the RF circuit and peak-to-average ratio (PAR) is measured at the output. For a faulty circuit, a significant difference is observed in the value of PAR as compared to a fault-free circuit. Simulation is performed for various circuit conditions such as fault-free as well as fault-induced and their corresponding PARs are stored in the look-up table. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.

  • PDF

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.313-314
    • /
    • 2015
  • 본 논문은 3상 4선식 인버터를 이용하여 임의의 전압 파형을 발생하기 위한 우수한 성능의 폐루프 전압 제어기를 제안하고 제어 이득 설정 방법을 제시한다. 먼저, 임의 파형 발생기에 사용된 3상 4선식 인버터 및 LC 필터 회로 구조를 분석하고, 이를 기반으로 한 전압 제어기 구조를 제안한다. 제안된 전압 제어기는 폐루프 형태의 PI 전압 제어기를 사용하고, 과도 특성 개선 및 부하 전류로 인한 전압 왜곡 방지를 위해 인버터 전류 및 부하 전류 정보를 전향 보상에 사용한다. 실험을 통해 전압 지령에 대한 응답 특성이 향상되는 것을 확인할 수 있다.

  • PDF

Detection Performance of Noncoherent Radar: MIMO Radar, Phased Array Radar, Directional MIMO Radar (비동기식 레이더의 검출 성능 비교: MIMO 레이더, 위상 배열 레이더, 지향성 MIMO 레이더)

  • An, Chan-Ho;Yang, Jang-Hoon;Pak, Ui-Young;Ryu, Young-Jae;Han, Duk-Chan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1752-1757
    • /
    • 2011
  • In a traditional phased array radar, closely spaced antenna elements transmit a scaled version of single waveform to maximize the signal energy. On the contrary, a multiple-input multiple-output (MIMO) radar consists of widely separated antennas and transmits an arbitrary waveform from each antenna element. These waveforms and spatial diversity enable superior capabilities compared with phased array radar. At high signal-to-noise ratio (SNR), the detection performance of the MIMO radar is better than the phased array radar due to the diversity gains. However, the phased array radar outperforms the MIMO radar at low SNR, due to the energy maximization. In this paper, we investigate the compromised scheme between the MIMO radar and the phased array radar. Employing the MIMO radar equipped with phased array elements, the compromised scheme achieves both array gain and diversity gain. Also, we compare the performance degradation when the steering direction is incorrect.