• 제목/요약/키워드: arbitrary quadrilateral plate

검색결과 7건 처리시간 0.019초

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

A spline finite element method on mapping

  • Ding, Hanshan;Shao, Rongguang;Ding, Dajun
    • Structural Engineering and Mechanics
    • /
    • 제4권4호
    • /
    • pp.415-424
    • /
    • 1996
  • This paper presents a newly suggested calculation method in which an arbitrary quadrilateral element with curved sides is transformed to a normal rectangular one by mapping of coordinates, then the two-dimensional spline is adopted to approach the displacement function of this element. Finally the solution can be obtained by the least-energy principle. Thereby, the application field of Spline Finite Element Method will be extended.

Problem-dependent cubic linked interpolation for Mindlin plate four-node quadrilateral finite elements

  • Ribaric, Dragan
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1071-1094
    • /
    • 2016
  • We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral plate finite elements with 12 external degrees of freedom that pass the constant bending patch test for arbitrary node positions of which the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form. The new elements are compared to the existing linked-interpolation quadratic and nine-node cubic elements presented by the author earlier and to the other elements from literature that use the cubic linked interpolation by testing them on several benchmark examples.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

임의의 경계조건을 갖는 철근 콘크리트 선형판의 해석 -제1보 개각의 영향 (An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (I) - Part I Effects of open-angle -)

  • 조진구
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.94-103
    • /
    • 1991
  • This study was carried out to investigate the engineering characteristics of the R.C circular ring sector plate with various boundary conditions and then to propose a rational and paraical method for application of finite element method to R.C structures. The stiffness matrix of the circular ring sector plate was obtained by using the multi-base coordinate system in which the base-coordinate systems were constructed for each nodal point of the quadrilateral element in order to reflect the complicated boundary conditions conveniently and correctly. The R.C element stiffness matrix was constructed by adding the stiffness coefficients of the steel-bar element into the plate bending element stiffness matrix. Herein, the steel-bar element was treated as the common beam element. Using the above method, the effects of steel-bar can be considered without increasing of the numbers of element and nodal points.

  • PDF

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.