Browse > Article
http://dx.doi.org/10.12989/sem.2016.59.6.1071

Problem-dependent cubic linked interpolation for Mindlin plate four-node quadrilateral finite elements  

Ribaric, Dragan (Faculty of Civil Engineering, University of Rijeka)
Publication Information
Structural Engineering and Mechanics / v.59, no.6, 2016 , pp. 1071-1094 More about this Journal
Abstract
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral plate finite elements with 12 external degrees of freedom that pass the constant bending patch test for arbitrary node positions of which the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form. The new elements are compared to the existing linked-interpolation quadratic and nine-node cubic elements presented by the author earlier and to the other elements from literature that use the cubic linked interpolation by testing them on several benchmark examples.
Keywords
Mindlin plate theory; quadrilateral displacement-based plate finite elements; problem-independent and problem-dependent linked interpolation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ribaric, D. and Jelenic, G. (2012), "Higher-order linked interpolation in quadrilateral thick plate finite elements", Finite Elem. Anal. Des., 51, 67-80.   DOI
2 Ribaric, D. and Jelenic, G. (2014), "Distortion-immune nine-node displacement-based quadrilateral thick plate finite elements that satisfy constant-bending patch test", Int. J. Numer. Meth. Eng., 98(7), 492-517.   DOI
3 Soh, A.K., Cen, S., Long, Y.Q. and Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Solid., 20(2), 299-326.   DOI
4 Taylor, R.L. and Auricchio, F. (1993), "Linked interpolation for Reissner-Mindlin plate elements: Part II-a simple triangle", Int. J. Numer. Meth. Eng., 36(18), 3057-3066.   DOI
5 Tessler, A. and Dong, S.B. (1981), "On a hierarchy of conforming Timoshenko beam elements", Comput. Struct., 14(3), 335-344.   DOI
6 Tessler, A. and Hughes, T.J.R. (1983), "An improved treatment of transverse shear in the Mindlin-type fournode quadrilateral element", Comput. Meth. Appl. Mech. Eng., 39(3), 311-335.   DOI
7 Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear deformable beams and plates: Relationships with classical solutions, Elsevier.
8 WanJi, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory" Int. J. Numer. Meth. Eng., 47(1-3), 605-627.   DOI
9 Xu, Z., Zienkiewicz, O.C. and Zeng L.F. (1994), "Linked interpolation for Reissner-Mindlin plate elements: Part III-An alternative quadrilateral", Int. J. Numer. Meth. Eng., 37(9), 1437-1443.   DOI
10 Zhang, H. and Kuang, J.S. (2007), "Eight-node Reissner-Mindlin plate element based on boundary interpolation using Timoshenko beam function", Int. J. Numer. Meth. Eng., 69(7), 1345-1373.   DOI
11 Zienkiewicz, O.C. and Taylor, R.L. (2000), The finite element method: Solid mechanics, Fifth Edition, Butterworth-Heinemann.
12 Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), "Linked interpolation for Reissner-Mindlin plate elements: Part I-A simple quadrilateral", Int. J. Numer. Meth. Eng., 36(18), 3043-3056.   DOI
13 Chen, W.J., Wang, J.Z. and Zhao, J. (2009), "Functions for patch test in finite element analysis of the Mindlin plate and the thin cylindrical shell", Sci. China Ser. G: Phys. Mech. Astron., 52(5), 762-767.   DOI
14 Auricchio, F. and Taylor, R.L. (1994), "A shear deformable plate element with an exact thin limit", Comput. Meth. Appl. Mech. Eng., 118(3), 393-412.   DOI
15 Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22(3), 697-722.   DOI
16 Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234.   DOI
17 Choo, Y.S., Choi, N. and Lee, B.C. (2010), "A new hybrid-Trefftz triangular and quadrilateral plate elements", Appl. Math. Model., 34(1), 14-23.   DOI
18 Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element", J. Appl. Mech., 48(3), 587-596.   DOI
19 Crisfield, M.A. (1984), "A quadratic Mindlin element using shear constraints", Comput. Struct., 18(5), 833-852.   DOI
20 Dukic-Papa, E. and Jelenic, G. (2014), "Exact solution of 3D Timoshenko beam problem: problemdependent formulation", Arch. Appl. Mech., 84(3), 375-384.   DOI
21 Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. Appl. Mech. Eng., 110(3), 195-209.   DOI
22 Jelenic, G. and Papa, E. (2011), "Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order", Arch. Appl. Mech., 81(2), 171-183.   DOI
23 Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Softw., 41(5), 712-728.   DOI
24 MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70(1), 3-12.   DOI
25 Papadopoulos, P. and Taylor, R.L. (1990), "A triangular element based on Reissner-Mindlin plate theory", Int. J. Numer. Meth. Eng., 30(5), 1029-1049.   DOI
26 Rezaiee-Pajand, M. and Karkon, M. (2012), "Two efficient hybrid-Trefftz elements for plate bending analysis", Latin Am. J. Solid. Struct., 9(1), 43-67.   DOI
27 Ribaric, D. (2012), "Higher-order linked interpolation in moderately thick plate and facet shell finite elements", PhD Thesis, Faculty of Civil Engineering, University of Rijeka.