• Title/Summary/Keyword: arabidopsis

Search Result 819, Processing Time 0.022 seconds

Single-dose Oral Toxicity Study of β-glucosidase 1 (AtBG1) Protein Introduced into Genetically Modified Rapeseed (Brassica napus L.) (GM 유채에 도입된 β-glucosidase 1 (AtBG1)의 단회투여독성시험)

  • Lee, Soonbong;Jeong, Kwangju;Jang, Kyung-Min;Kim, Sung-Gun;Park, Jung-Ho;Kim, Shinje
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Rapeseed (Brassica napus L.) is an oil crop classified as Brassicaceae, and it is widely grown worldwide. To develop a drought-resistant rapeseed, the ${\beta}$-glucosidase 1 (AtBG1) gene was introduced into rapeseed because drought- and salt-resistance phenotypes were observed when the AtBG1 gene was overexpressed in arabidopsis. Newly developed genetically modified crop must be proved to be safe. Safety assessments are based on the historical usage and scientific reports of a crop. In this study, we examined the potential acute oral toxicity of AtBG1 protein expressed in genetically modified (GM) rapeseed and calculated the minimum lethal dose at 6 weeks in both male and female ICR mice. AtBG1 protein was fed at a dose of 2,000 mg/kg body weight in five male and five female mice according to the marginal capacity concentration of OECD, 2,000 mg/15 ml/kg. Mortalities, clinical findings, and body weight changes were monitored for 14 days after dosing, and postmortem necropsy was performed on day 14. This study showed that no deaths occurred in the test group, and AtBG1 protein did not result in variations in common symptoms, body weight, and postmortem findings between the two groups. This showed that the minimum lethal dose of AtBG1 protein expressed in transgenic rapeseed exceed 2,000 mg/kg body weight in both sexes.

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.

Establishing Effective Screening Methodology for Novel Herbicide Substances from Metagenome (신규 제초활성 물질 발굴을 위한 메타게놈 스크리닝 방법 연구)

  • Lee, Boyoung;Choi, Ji Eun;Kim, Young Sook;Song, Jae Kwang;Ko, Young Kwan;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • Metagenomics is a powerful tool to isolate novel biocatalyst and biomolecules directly from the environmental DNA libraries. Since the metagenomics approach bypasses cultivation of microorganisms, un-cultured microorganisms that are majority of exists can be the richest reservoir for natural products discovery. To discover novel herbicidal substances from soil metagenome, we established three easy, simple and effective high throughput screening methods such as cucumber cotyledon leaf disc assay, microalgae assay and seed germination assay. Employing the methods, we isolated two active single clones (9-G1 and 9-G12) expressing herbicidal activity which whitened leaf discs, inhibited growth of microalgae and inhibited root growth of germinated Arabidopsis seeds. Spraying butanol fraction of the isolated active clones' culture broth led to growth retardation or desiccation of Digitalia sanguinalis (L) Scop. in vivo. These results represent that the screening methods established in this study are useful to screen herbicidal substances from metagenome libraries. Further identifying molecular structure of the herbicidal active substances and analyzing gene clusters encoding synthesis systems for the active substances are in progress.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

  • Cho, Won Kyong;Hyun, Tae Kyung;Kumar, Dhinesh;Rim, Yeonggil;Chen, Xiong Yan;Jo, Yeonhwa;Kim, Suwha;Lee, Keun Woo;Park, Zee-Yong;Lucas, William J.;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.685-696
    • /
    • 2015
  • Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

Identification and Characterization of Alternative Promoters of the Rice MAP Kinase Gene OsBWMK1

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Park, Hyeong Cheol;Kang, Chang Ho;Shim, Sang In;Chung, Jong Il;Cheong, Yong Hwa;Lee, Sang Yeol;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.467-473
    • /
    • 2009
  • Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Utilization of Multiple Carbon Sources by Plant Cells

  • Lee, Taek-Kyun;Suh, Jung-Bin;Kim, Se-Hee;Lee, Sun-Min;Lee, Woo-Sung
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1999.10b
    • /
    • pp.11-11
    • /
    • 1999
  • ;It has been reported that suspension-cultured rice cells grown on mixed carbon sources of glucose (GIc) and acetate exhibited diauxic growth in which acetate was the preferred carbon source (Lee and Lee, 1996). Carrot (Daucus carota L.) suspension cells, showing a diauxic growth very similar to that of rice cells, were used to delineate the mechanisms underlying this preferential use of acetate over GIc. Uptakes of both GIc and 3-0-methylglucose (3-0MG), a non-metabolizable GIc analogue, were similarly inhibited when acetate or butylate, weak acids which are capable of transporting protons into the cytosol, were present in the uptake assay mixture containing cells harvested during the GIc-utilizing second growth phase. Inhibition of GIc uptake by these weak acids was similar when equivalent experiments were carried out with isolated plasma membranes. It was further shown that Glc uptake, which requires a proper proton gradient across the plasma membranes, was inhibited during the first growth phase by acetate-mediated alkalization of growth medium and/or simultaneous acidification of cytosol. This study strongly suggests that Glc utilization in plant cells is inhibited by co-presenting carbon source(s) which can alter the proton gradient across the plasma membrane. We further examined diauxic growth in culture containing GIc and malate. Unlike the case in the culture with GIc and acetate, carrot cells used GIc first. Malate was utilized only after Glc is depleted from medium. These results indicate that GIc can be a preferred or less-preferred carbon source depending on the competing carbon source. It was noted that malate was not directly taken up by cells. Instead it was converted extracellularly into fumarate which was subsequently transported into cells. During the malate-growth phase malate uptake was negligible, and fumarate uptake was active and pH-sensitive. It was shown that fumarase released into medium was responsible for the extracellular conversion of malate into fumarate. An immunoblot experiments showed that fumarase antibody raised against Arabidopsis fumarase provided positive signals only in medium in malate culture, not in fumarate or GIc cultures. This study demonstrates the first example in that fumarase, a mitochondria marker enzyme, can be present in places other than mitochondria.ndria.

  • PDF

Introduction of CAX1 into 'Hongro' Apple via Agrobacterium tumefaciens (CAX1 유전자가 도입된 사과 '홍로' 형질전환체)

  • Kim, Jeong-Hee;Shin, Il Sheob;Cho, Kang-Hee;Kim, Se Hee;Kim, Dae-Hyun;Hwang, Jeong Hwan
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.534-539
    • /
    • 2010
  • 'Hongro' is early-mid maturing cultivar with good quality like 'Tsugaru' and it has not preharvest drop. The CAX1 gene was introduced into Korean apple cultivar 'Hongro' by Agrobacterium tumefaciens LBA4404 harboring pBI121 to obtain transgenic apple with enhanced Ca level. The CAX1 gene playing the role of $H^+/Ca^{2+}$ transporter from Arabidopsis thaliana increases Ca concentration in several plants. Regenerated transgenic lines were confirmed by polymerase chain reaction (PCR) analysis and Southern blot analysis of genomic DNA for the existence of CAX1 gene. Southern blot analysis of 'Hongro' transformants showed that two putative transgenic lines were integrated with CAX1 gene in genomic DNA. The CAX1 comparative expression levels of two transgenic lines were higher than that of non-transformant evaluated by comparative quantification analysis using a real-time PCR. These two lines were multiplied in vitro, and micro-grafted on apple rootstocks 'M.9' in the isolated greenhouse. Since two years after micro-grafting, the fruits came into bearing. Compared to Ca level of the non-transgenic 'Hongro', that of the CAX1 transgenic 'Hongro' in the flesh and leaves was higher.

Study of Growth and Anthocyanin Accumulation by Ozone Stress in Rice (벼 오존가스 노출에 따른 초기 생육 및 안토시아닌 생합성 변화 분석 연구)

  • HyeonSeok Lee;WoonHa Hwang;SeoYeong Yang;Yeongseo Song;WooJin Im;HoeJeong Jeong;ChungGen Lee;Juhee Kim;MyoungGoo Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2023
  • Recently, the concentration of fine dust causative substances (NOx, VOC, etc.) in the atmosphere has increased, resulting in high concentrations of tropospheric ozone (O3) and increased damage to crops. This study aimed to analyze the impact of high concentrations of ozone gas on the initial growth of rice plants and investigate the relationship between ozone damage resistance and anthocyanin biosynthesis. To achieve this, rice plants were exposed to elevated levels of ozone g as using an ozone chamber, and subsequent measurements were taken to assess changes in growth, the percentage of damaged leaves, and the anthocyanin content. The results revealed that varieties with a higher proportion of damaged leaves exhibited a relative increase in anthocyanin biosynthesis following ozone exposure. Notably, detrimental effects on growth, such as decreased biomass, were mitigated. Additionally, Anthocyanin biosynthesis genes in rice were listed by selecting homologous genes from Arabidopsis and Maize. The expression of OsF3H2, OsFLS1 and OsLDOX3 was induced during ozone treatment. This result is expected to contribute to the study of the protection mechanism of plants from ozone damage.