Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0033

Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli  

Cho, Won Kyong (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Hyun, Tae Kyung (Department of Industrial Plant Science and Technology,College of Agricultural, Life and Environmental Sciences, Chungbuk National University)
Kumar, Dhinesh (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Rim, Yeonggil (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Chen, Xiong Yan (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Jo, Yeonhwa (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Kim, Suwha (Department of Life Science, Gwangju Institute of Science and Technology)
Lee, Keun Woo (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Park, Zee-Yong (Department of Life Science, Gwangju Institute of Science and Technology)
Lucas, William J. (Department of Plant Biology, University of California)
Kim, Jae-Yean (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Abstract
Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.
Keywords
callus; cell wall proteins; MudPIT; proteomics; rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST:a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.   DOI
2 Baluska, F., Hlavacka, A., Volkmann, D., and Menzel, D. (2004). Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol. 14, 404-408.   DOI   ScienceOn
3 Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., and Maule, A.J. (2006). Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6, 301-311.   DOI   ScienceOn
4 Bendtsen, J.D., Jensen, L.J., Blom, N., Von Heijne, G., and Brunak, S. (2004). Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349-356.   DOI   ScienceOn
5 Bhushan, D., Pandey, A., Chattopadhyay, A., Choudhary, M.K., Chakraborty, S., Datta, A., and Chakraborty, N. (2006). Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J. Proteome Res. 5, 1711-1720.   DOI   ScienceOn
6 Borderies, G., Jamet, E., Lafitte, C., Rossignol, M., Jauneau, A., Boudart, G., Monsarrat, B., Esquerre-Tugaye, M.T., Boudet, A., and Pont-Lezica, R. (2003). Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24, 3421-3432.   DOI   ScienceOn
7 Brewis, I.A., Turner, A.J., and Hooper, N.M. (1994). Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C. Biochem. J. 303, 633-638.   DOI
8 Charmont, S., Jamet, E., Pont-Lezica, R., and Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66, 453-461.   DOI   ScienceOn
9 Chen, X.Y., Kim, S.T., Cho, W.K., Rim, Y., Kim, S., Kim, S.W., Kang, K.Y., Park, Z.Y., and Kim, J.Y. (2009). Proteomics of weakly bound cell wall proteins in rice calli. J. Plant Physiol. 166, 675-685.   DOI   ScienceOn
10 Chivasa, S., Ndimba, B.K., Simon, W.J., Robertson, D., Yu, X.L., Knox, J.P., Bolwell, P., and Slabas, A.R. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23, 1754-1765.   DOI
11 Dahal, D., Pich, A., Braun, H.P., and Wydra, K. (2010). Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol. Biol. 73, 643-658.   DOI
12 Cho, W.K., Chen, X.Y., Chu, H., Rim, Y., Kim, S., Kim, S.T., Kim, S.W., Park, Z.Y., and Kim, J.Y. (2009). Proteomic analysis of the secretome of rice calli. Physiol. Plant. 135, 331-341.   DOI   ScienceOn
13 Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., and Liu, J. (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5, 3162-3172.   DOI   ScienceOn
14 Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469.   DOI   ScienceOn
15 Denecke, J., De Rycke, R., and Botterman, J. (1992). Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 11, 2345-2355.
16 Eisenhaber, B., Wildpaner, M., Schultz, C.J., Borner, G.H., Dupree, P., and Eisenhaber, F. (2003). Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequenceand genome-wide studies for Arabidopsis and rice. Plant Physiol. 133, 1691-1701.   DOI   ScienceOn
17 Edwards, S.R., Braley, R., and Chaffin, W.L. (1999). Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 177, 211-216.   DOI
18 Eichenbaum, Z., Green, B.D., and Scott, J.R. (1996). Iron starvation causes release from the group A streptococcus of the ADPribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infect. Immun. 64, 1956-1960.
19 Fankhauser, N., and Maser, P. (2005). Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846-1852.   DOI   ScienceOn
20 Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953-971.   DOI   ScienceOn
21 Feiz, L., Irshad, M., Pont-Lezica, R.F., Canut, H., and Jamet, E. (2006). Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2, 10.   DOI
22 Ge, C., Wan, D., Wang, Z., Ding, Y., Wang, Y., Shang, Q., Ma, F., and Luo, S. (2008). A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress. J. Environ. Sci. (China) 20, 309-319.   DOI   ScienceOn
23 Gotz, S., Garcia-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435.   DOI   ScienceOn
24 Gozalbo, D., Gil-Navarro, I., Azorín, I., Renau-Piqueras, J., J.P., and Gil, M.L. (1998). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66, 2052-2059.
25 Groover, A.T., Fontana, J.R., Arroyo, J.M., Yordan, C., McCombie, W.R., and Martienssen, R.A. (2003). Secretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps. Plant Physiol. 132, 698-708.   DOI   ScienceOn
26 Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.   DOI   ScienceOn
27 Keegstra, K. (2010). Plant cell walls. Plant Physiol. 154, 483-486.   DOI   ScienceOn
28 Jamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H., and Pont-Lezica, R. (2008). Recent advances in plant cell wall proteomics. Proteomics 8, 893-908.   DOI   ScienceOn
29 Jensen, L.J., and Bork, P. (2010). Ontologies in quantitative biology: a basis for comparison, integration, and discovery. PLoS Biol. 8, e1000374.   DOI   ScienceOn
30 Jung, Y.H., Jeong, S.H., Kim, S.H., Singh, R., Lee, J.E., Cho, Y.S., Agrawal, G.K., Rakwal, R., and Jwa, N.S. (2008). Systematic secretome analyses of rice leaf and seed callus suspensioncultured cells: workflow development and establishment of highdensity two-dimensional gel reference maps. J. Proteome Res. 7, 5187-5210.   DOI   ScienceOn
31 Kim, S.T., Kang, Y.H., Wang, Y., Wu, J., Park, Z.Y., Rakwal, R., Agrawal, G.K., Lee, S.Y., and Kang, K.Y. (2009). Secretome analysis of differentially induced proteins in rice suspensioncultured cells triggered by rice blast fungus and elicitor. Proteomics 9, 1302-1313.   DOI   ScienceOn
32 Kim, S.G., Wang, Y., Lee, K.H., Park, Z.Y., Park, J., Wu, J., Kwon, S.J., Lee, Y.H., Agrawal, G.K., Rakwal, R., et al. (2013). Indepth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78, 58-71.   DOI   ScienceOn
33 Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., and Furukawa, K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39, 1435-1349.   DOI   ScienceOn
34 Kong, F.J., Oyanagi, A., and Komatsu, S. (2010). Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim. Biophys. Acta 1804, 124-136.   DOI   ScienceOn
35 Möller, S., Croning, M.D., and Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653.   DOI   ScienceOn
36 Marcilla, A., Trelis, M., Cortes, A., Sotillo, J., Cantalapiedra, F., Minguez, M.T., Valero, M.L., Sánchez del Pino, M.M., Munoz-Antoli, C., Toledo, R., et al. (2012). Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 7, e45974.   DOI
37 Marques, M.A., Chitale, S., Brennan, P.J., and Pessolani, M.C. (1998). Mapping and identification of the major cell wallassociated components of Mycobacterium leprae. Infect. Immun. 66, 2625-2631.
38 Millar, D.J., Whitelegge, J.P., Bindschedler, L.V., Rayon, C., Boudet, A.M., Rossignol, M., Borderies, G., and Bolwell, G.P. (2009). The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9, 2355-2372.   DOI   ScienceOn
39 Mulder, N., and Apweiler, R. (2007). InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol. Biol. 396, 59-70.   DOI   ScienceOn
40 Ndimba, B.K., Chivasa, S., Hamilton, J.M., Simon, W.J., and Slabas, A.R. (2003). Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3, 1047-1059.   DOI   ScienceOn
41 Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R.L., Lee, Y., Zheng, L., et al. (2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883-D887.   DOI   ScienceOn
42 Rabouille, C., Malhotra, V., and Nickel, W. (2012). Diversity in unconventional protein secretion. J. Cell Sci. 125, 5251-5255.   DOI   ScienceOn
43 Pandey, A., Rajamani, U., Verma, J., Subba, P., Chakraborty, N., Datta, A., Chakraborty, S., and Chakraborty, N. (2010). Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J. Proteome Res. 9, 3443-3464.   DOI   ScienceOn
44 Pettolino, F.A., Walsh, C., Fincher, G.B., and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590-1607.   DOI   ScienceOn
45 Pierleoni, A., Martelli, P.L., and Casadio, R. (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9, 392.   DOI   ScienceOn
46 Robertson, D., Mitchell, G.P., Gilroy, J.S., Gerrish, C., Bolwell, G.P., and Slabas, A.R. (1997). Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J. Biol. Chem. 272, 15841-15848.   DOI   ScienceOn
47 Rose, J.K., and Lee, S.J. (2010). Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. 153, 433-436.   DOI   ScienceOn
48 Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., Hao, Z., Zhu, X., Avci, U., Miller, J.S., et al. (2013). An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25, 270-287.   DOI   ScienceOn
49 Watson, B.S., Lei, Z., Dixon, R.A., and Sumner, L.W. (2004). Proteomics of Medicago sativa cell walls. Phytochemistry 65, 1709-1720.   DOI   ScienceOn
50 Yan, J.X., Wait, R., Berkelman, T., Harry, R.A., Westbrook, J.A., Wheeler, C.H., and Dunn, M.J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrixassisted laser desorption/ionization and electrospray ionizationmass spectrometry. Electrophoresis 21, 3666-3672.   DOI
51 Yang, J.L., Zhu, X.F., Peng, Y.X., Zheng, C., Li, G.X., Liu, Y., Shi, Y.Z., and Zheng, S.J. (2011). Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol. 155, 1885-1892.   DOI   ScienceOn
52 Zhu, J.K., Damsz, B., Kononowicz, A.K., Bressan, R.A., and Hasegawa, P.M. (1994). A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha. Plant Cell 6, 393-404.
53 Zhu, J., Alvarez, S., Marsh, E.L., Lenoble, M.E., Cho, I.J., Sivaguru, M., Chen, S., Nguyen, H.T., Wu, Y., Schachtman, D.P., et al. (2007). Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol. 145, 1533-1548.   DOI   ScienceOn
54 Zhou, L., Bokhari, S.A., Dong, C.J., and Liu, J.Y. (2011). Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 6, e16723.   DOI   ScienceOn