• 제목/요약/키워드: arabidopsis

검색결과 822건 처리시간 0.035초

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Characterization of an Abiotic Stress-inducible Dehydrin Gene, OsDhn1, in Rice (Oryza sativa L.)

  • Lee, Sang-Choon;Lee, Mi-Yeon;Kim, Soo-Jin;Jun, Sung-Hoon;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.212-218
    • /
    • 2005
  • A full-length 1.1 kb cDNA, designated Oryza sativa Dehydrin 1 (OsDhn1), was isolated from the seed coat of rice. The deduced protein is hydrophilic and has three K-type and one S-type motifs (SK3-type), indicating that OsDhn1 belongs to the acidic dehydrin family, which includes wheat WCOR410 and Arabidopsis COR47. Expression of OsDhn1 was strongly induced by low temperature as well as by drought. Induction of OsDhn1 by cold stress was clearcut in the roots of seedlings and the epidermis of palea and lemma. OsDhn1 was also up-regulated in UBI::CBF1/DREB1b transgenic plants indicating that it is regulated by the CBF/DREB stress signaling pathway.

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

Molecular cloning and characterization of peroxiredoxin from Toxoplasma gondii

  • Son, Eui-Sun;Song, Kyoung-Ju;Shin, Jong-Chul;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제39권2호
    • /
    • pp.133-141
    • /
    • 2001
  • A cDNA of 1.1 kb comprising the gene encoding the peroxiredoxin of Toxo-plasma gondii(TgPrx) has been cloned. The open reading frame of 591 Up was translated into a protein of 196 amino acids with a molecular mass of 25 kDa. Conserved 2 cysteine domains of Phe-Val-Cys-Pro and Glu-Val-Cys-Pro indicated TgPrx belonged to 2-Cys Prx families. TgPrx showed the highest homology with that of Arabidopsis thaliana by 53.9% followed by Entamoeba histolytica with 39.5% by the amino acid sequence alignment. Polyclonal antibody against recombinant TgPrx detected 25 kDa band in T. gondii without binding to host cell proteins TgPrx was located in the cytoplasm of T. gondii extracellularly or intracellularly by immunofluorescence assay. The expression of TgPrx was increased as early as 30 min after the treatment with artemisinin in the intracellular stage, while no changes in those of host Prx I and TgSOD. This result implies that TgPrx may function as an antioxidant protecting the cell from the attack of reactive oxygen intermediates. It is also suggested that TgPrx is a possible target of chemotherapy.

  • PDF

Characterization of Lupinus Iuteus Chloroplgsl Gene Coding for Components of a Chloroplastic NADH Dehydrogenase

  • Oczkowski, Marian;Augustyniak, Halina
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.73-78
    • /
    • 2000
  • The plastid genomes of several plants contain ndh genes homologues of genes encoding subunits of the mitochondrial complex I. We sequenced the part of lupin ndhB, ndhD and ndhF genes in order to compare the structure of these genes with those of Nicotiana tabaum, Arabidopsis thaliana, Zea mays and Oryza sativa with the idea to detect the presence of stretches with identical aminoacid composition. We were only able to find one or two stretches of this kind of about 16 aminoacid- long in the analyzed fragments of the ndh genes. The total number of such stretches was different in particular gene products: for ndhc 1, ndhB 9, ndhD 3 and ndhF 6. We have also examined the transcription pattern of ndhC, ndhK and ndhJ genes during lupin development. We show that the greatest amount of ndhC, ndhK and ndhJ transcripts are observed in 7- to 14 day- old lupin seedlings. We also studied the level of transcription of those genes in plants growing at low temperature. All the data confirmed that the abundance of transcription of ndhC, ndhK, and ndhJ genes increased under chill conditions. It has to be noted that the level of transcription of the ndhC gene was higher than the other genes probably due to higher stability of this transcript.

  • PDF

Tyrosine phosphorylation as a signaling component for plant improvement

  • Park, Youn-Il;Yang, Hyo-Sik;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.277-283
    • /
    • 2015
  • Plant genome analyses, including Arabidopsis thaliana showed a large gene family of plant receptor kinases with various extracellular ligand-binding domain. Now intensively studies to understand physiological and cellular functions for higher plant receptor kinases in diverse and complex biological processes including plant growth, development, ligands perception including steroid hormone and plant-microbe interactions. Brassinosteroids (BRs) as a one of well know steroid hormone are plant growth hormones that control biomass accumulation and also tolerance to many biotic and abiotic stress conditions and hence are of relevance to agriculture. BRI1 receptor kinase, which is localized in plasma membrane in the cell sense BRs and it bind to a receptor protein known as BRASSINOSTEROID INSENSITIVE 1 (BRI1). Recently, we reported that BRI1 and its co-receptor, BRI1-ASSOCIATED KINASE (BAK1) autophosphorylated on tyrosine residue (s) in vitro and in vivo and thus are dual-specificity kinases. Other plant receptor kinases are also phosphorylated on tyrosine residue (s). Post-translational modifications (PTMs) can be studied by altering the residue modified by directed mutagenesis to mimic the modified state or to prevent the modification. These approaches are useful to not only characterize the regulatory role of a given modification, but may also provide opportunities for plant improvement.

Progress in Genetic Manipulation of the Brassicaceae

  • Ahmed, Nasar Uddin;Park, Jong-In;Kim, Hye-Ran;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • 제39권1호
    • /
    • pp.1-12
    • /
    • 2012
  • With the increasing advances in Brassicaceae genetics and genomics, considerable progress has been made in the transformation of Brassicaceae. Transformation technologies are now being exploited routinely to determine the gene function and contribute to the development of novel enhanced crops. $Agrobacterium$-mediated transformation remains the most widely used approach for the introduction of transgenes into Brassicaceae. In $Brassica$, the transformation relies mainly on $in$ $vitro$ transformation methods. Nevertheless, despite the significant progress made towards enhancing the transformation efficiencies, some genotypes remain recalcitrant to transformation. Advances in our understanding of the genetics behind various transformations have enabled researchers to identify more readily transformable genotypes for use in routine high-throughput systems. These developments have opened up exciting new avenues to exploit model $Brassica$ genotypes as resources for understanding the gene function in complex genomes. Although many other Brassicaceae have served as model species for improving plant transformation systems, this paper summarizes on the recent technologies employed in the transformation of both $Arabidopsis$ and $Brassica$. The use of transformation technologies for the introduction of desirable traits and a comparative analysis of these as well as their future prospects are also important parts of the current research that is reviewed.

Sequence Homologies of GTP-binding Domains of Rab and Rho between Plants and Yeast/Animals Suggest Structural and Functional Similarities

  • Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.85-92
    • /
    • 1996
  • Small GTP-binding proteins are divided into three major group: Ras, Rho and Ypt/Rab. They have the conserved regions designed G1 to G5 that are critical in GDP/GTP exchange, GTP-induced conformational change and GTP hydrolysis. We isolated and characterized genomic DNA or cDNAfragments encoding G1 to G3 domains of small GTP-binding protein Rab and Rho from several plant species using two different PCR-based cloning strategies. Seven rab DNA fragments were isolated from 4 different plants, mung-bean, tobacco, rice and pepper using two degenerate primers corresponding to the GTP-binding domain G1 and G3 in small GTP-binding proteins. The amino acid sequences among these rab DNA fragments and other known small GTP-binding proteins shows that they belong to the Ypt/Rab family. Six rho DNA fragments were isolated from 5 different plants, mung-bean, rice, Arabidopsis, Allium and Gonyaulax using the nested PCR method that involves four degenerate primers corresponding to the GTP-binding domain G1, G3 and G4. The rho DNA fragments cloned show more than 90% homology to each other. Sequence comparison between plant and other known Rho family genes suggests that they are closely related (67 to 82% amino acid identity). Sequence analysis and southern blot analysis of rab and rho in mung-bean suggest than thses genes are encoded by multigene family in mung-bean.

  • PDF

동해안 사구로부터 Auxin을 생산하는 Bacillus cereus A-139의 분리 및 그 특성 (Isolation and Characterization of Bacillus cereus A-139 Producing Auxin from East Coast Sand Dunes)

  • 소재현;김덕진;신재호;유춘발;이인구
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.447-452
    • /
    • 2009
  • A bacterium, which was named to be Bacillus cereus A-139, secreting auxin was isolated from the east coast sand dunes in Korea. The secretion of auxin was confirmed by HPLC. When cultured in LB broth, Bacillus cereus A-139 produced $16.12\;{\mu}$g/mL auxin after 8 days in LB broth. Bacillus cereus A-139 produced $49\;{\mu}$g/mL auxin and $162.6\;{\mu}$g/mL by the addition of 2% tryptone and 0.1% tryptophan, respectively. The root growth of Arabidopsis thaliana was retarded by Bacillus cereus A-139 culture broth up to 57% but the formation of lateral roots was increased up to almost twice after 4 days incubation. Also the formation of lateral roots of mung bean was increased up to 57% after 10 days incubation.

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun;Choi, Yong-Geun;Lee, Ae-Ree;Seo, Yeo-Jin;Kwon, Mun-Young;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제18권2호
    • /
    • pp.52-57
    • /
    • 2014
  • The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.