DOI QR코드

DOI QR Code

Progress in Genetic Manipulation of the Brassicaceae

  • Received : 2012.02.27
  • Accepted : 2012.03.10
  • Published : 2012.03.31

Abstract

With the increasing advances in Brassicaceae genetics and genomics, considerable progress has been made in the transformation of Brassicaceae. Transformation technologies are now being exploited routinely to determine the gene function and contribute to the development of novel enhanced crops. $Agrobacterium$-mediated transformation remains the most widely used approach for the introduction of transgenes into Brassicaceae. In $Brassica$, the transformation relies mainly on $in$ $vitro$ transformation methods. Nevertheless, despite the significant progress made towards enhancing the transformation efficiencies, some genotypes remain recalcitrant to transformation. Advances in our understanding of the genetics behind various transformations have enabled researchers to identify more readily transformable genotypes for use in routine high-throughput systems. These developments have opened up exciting new avenues to exploit model $Brassica$ genotypes as resources for understanding the gene function in complex genomes. Although many other Brassicaceae have served as model species for improving plant transformation systems, this paper summarizes on the recent technologies employed in the transformation of both $Arabidopsis$ and $Brassica$. The use of transformation technologies for the introduction of desirable traits and a comparative analysis of these as well as their future prospects are also important parts of the current research that is reviewed.

Keywords

References

  1. Alaska-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of $AgNO_3$ and genotype. Plant Cell Rep 24:649-654 https://doi.org/10.1007/s00299-005-0010-8
  2. Alonso JM, Stepanova AN, Leisse TJ (2003) Genomewide insertional mutagenesis of Arabidopsis thaliana. Science 301:653-657 https://doi.org/10.1126/science.1086391
  3. An, G,Watsen BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301-305 https://doi.org/10.1104/pp.81.1.301
  4. Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183-188 https://doi.org/10.1007/s002990050375
  5. Bano R, Khan MH, Khan RS, Rashid H, Swati ZA (2010) Development of an efficient regeneration protocol for three genotypes of Brassica juncea. Pak. J. Bot., 42(2):963-969
  6. Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 10:308-314
  7. Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22 https://doi.org/10.1186/1746-4811-4-22
  8. Bent A (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana press, Totowa, NJ
  9. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711-8721 https://doi.org/10.1093/nar/12.22.8711
  10. Bhalla PL, Singh M (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 2:181-189
  11. Bhuiyan MSU, Min SR, Jeong WJ, Sultana S, Choi KS, Lim YP, Song WY, Lee Y, Liu JR (2011) An improved method for Agrobacterium-mediated genetic transformation from cotyledon explants of Brassica juncea. Plant Biotechnology 28:17-23 https://doi.org/10.5511/plantbiotechnology.10.0921a
  12. Burnett L, Arnoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon explants of Brassica rapa ssp. oleifera through pretreatment with auxin and cytokinin and use of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253-256
  13. Cao J, Shelton AM, Earle ED (2008) Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Rep 27:479-487 https://doi.org/10.1007/s00299-007-0473-x
  14. Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131-141 https://doi.org/10.1023/A:1009619924620
  15. Cardoza V, Stewart N (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599-604
  16. Cardoza V, Stewart N (2004) Invited review: Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542-551 https://doi.org/10.1079/IVP2004568
  17. Cardoza V, Stewart N (2006) Canola (Brassica napus L.). In: Wang K (ed) Agrobacterium protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJ
  18. Chi GL, Barfield DG, Sim GE, Pua EC (1990) Effect of $AgNO_3$ and aminovinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9:195-198
  19. Cho H, Cao J, Ren J, Earle E (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. Pekinensis) transformed with a synthetic bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1-7 https://doi.org/10.1007/s002990000278
  20. Christey MC (2001) Use of RI-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687-700 https://doi.org/10.1007/s11627-001-0120-0
  21. Christey MC, Braun RH (2007) Vegetable Brassicas. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Vegetable crops, vol 7. Wiley-Blackwell
  22. Christey MC, Sinclair BK, Brassicas RH, Wyke L (1997) Regeneration of transgenic vegetable Brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587-593 https://doi.org/10.1007/BF01275497
  23. Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449-457 https://doi.org/10.1111/j.1365-313X.2005.02454.x
  24. Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method - plant development and surfactant are important in optimizing transformation efficiency. Trans Res 10:363-371 https://doi.org/10.1023/A:1016600517293
  25. Damm B, Scmidt R, Willmitz L (1989) Efficient transformation of Arabidopsis thaliana using direct gene transfer to protoplasts. Mol Gen Genet 217:6-12 https://doi.org/10.1007/BF00330935
  26. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581-586
  27. De Block M, Tenning P, de Brouwer D (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91(2):694-701 https://doi.org/10.1104/pp.91.2.694
  28. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895-904 https://doi.org/10.1104/pp.123.3.895
  29. Dhinrga A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101(6315):6320
  30. Eapen S, George L (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver nitrate and silver thiosulfate. Plant Cell Tissue Organ Cult 51:228-232
  31. Ecker JR, Davis RW (1986) Inhibition of gene-expression in plant-cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372-5376 https://doi.org/10.1073/pnas.83.15.5372
  32. Eimert K, Siegemund F (1992) Transformation of cauliflower (Brassica oleracea L.var. botrytis)-an experimental survey. Plant Mol Biol 19:485-490 https://doi.org/10.1007/BF00023396
  33. Ferrandiz C, Liljegren SJ, Yanofky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436-438 https://doi.org/10.1126/science.289.5478.436
  34. Fobis-Loisy I, Chambrier P, Gaude T (2007) Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues. Plant Cell Rep 26:745-753 https://doi.org/10.1007/s00299-006-0282-7
  35. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulating microRNA activity. Nat Genet 39:1033-1037 https://doi.org/10.1038/ng2079
  36. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323-328 https://doi.org/10.1007/s002990050401
  37. Gasic K, Korban SS (2006) Indian mustard [Brassica juncea (L.) Czern]. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana Press, Totowa, NJ
  38. Gil-Humanes J, Martín A, Barro F (2011) Characterization of a Collection of Brassica carinata Genotypes for in vitro Culture Response and Mode of Shoot Regeneration. American Journal of Plant Sciences. 2:27-34. doi:10.4236/ajps.2011.21003
  39. Gupta V, Sita GL, Shaila MS, Jagannathan V (1993) Genetic transformation of Brassica nigra by Agrobacterium based vector and direct plasmid uptake. Plant Cell Rep 12:418-421
  40. Halfhill M, Millwood RJ, Raymer PL, Stewart C Jr (2002) Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ Biosafety Res 1:19-28 https://doi.org/10.1051/ebr:2002002
  41. Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5(10): 446-451 https://doi.org/10.1016/S1360-1385(00)01740-4
  42. Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separate vir and T region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179-180 https://doi.org/10.1038/303179a0
  43. Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T DNA. J Bacteriol 168:1291-1301
  44. Hou B, Zhou Y, Wan L, Zhang Z, Shen G, Chen Z, Hu Z (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111-114 https://doi.org/10.1023/A:1022180315462
  45. Hu Q, Anderson SB, Hansen LN (1999) Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell Tiss Organ Cult 59:189-196 https://doi.org/10.1023/A:1006417530587
  46. James C (2007) Global status of commercialized biotech/GM crops: Brief No. 37. ISAAA, Ithaca, NY
  47. Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Biol Plant 36:231-237 https://doi.org/10.1007/s11627-000-0043-1
  48. Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285-297 https://doi.org/10.1007/BF02525170
  49. Kamal GB, Lllich KG, Asadollah A (2007) Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr J Biotechnol 6:861-867
  50. KellerWA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55:1383-1388 https://doi.org/10.1139/b77-160
  51. Khan M R, Hamid Rashid1 and Azra Quraishi (2002) High Frequency Shoot Regeneration from Hypocotyl of Canola (Brassica napus L.) cv. Dunkled. Plant Tissue Cult 12(2): 131-138
  52. Klimaszewska K, Keller K (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tiss Organ Cult 4:183-197 https://doi.org/10.1007/BF00040193
  53. Kojima M, Sparthana P, Teixeira da Silva JA, Nogawa M (2006) Development of in planta transformation methods using Agrobacterium tumefaciens. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, Isleworth, UK
  54. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383-396 https://doi.org/10.1007/BF00331014
  55. Kuvshinov V, Koivu K, Kanera A, Perhu E (1999) Agrobacterium tumefaciens mediated transformation of greenhouse-grown Brassica rapa ssp. oleifera. Plant Cell Rep 18:733-777 https://doi.org/10.1007/s002990050651
  56. Lall S, Nettleton D, Decook R, Che P, Howell S (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883-1892 https://doi.org/10.1534/genetics.103.025213
  57. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963-967 https://doi.org/10.1038/nbt1091-963
  58. Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769:455-461 https://doi.org/10.1016/j.bbaexp.2007.05.001
  59. Lee MK, Kim HS, Kim JS, Kim SH, Park YD (2004) Agrobacterium-mediated transformation system for largescale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J Plant Biol 47:300-306 https://doi.org/10.1007/BF03030544
  60. Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309-317 https://doi.org/10.1016/j.jbiotec.2005.08.033
  61. Litcher R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Plant Physiol (formally Z. Pflanzenphysiol) 105:427-434
  62. Liu C, Lin C, Chen JJW, Tseng M (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733-1744 https://doi.org/10.1007/s00299-007-0374-z
  63. Liu F, Cao MQ, Yao L, Robaglia C, Tourneur C (1998) In Planta transformation of pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187-192
  64. Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234:464-466 https://doi.org/10.1126/science.234.4775.464
  65. Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnology 29:(1) 145-155
  66. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289-313 https://doi.org/10.1146/annurev.arplant.55.031903.141633
  67. Mehra S, Pareek A, Bandyopadhyay P, Sharma P, Burma PK, Pental D (2000) Development of transgenics in Indian oilseed mustard (Brassica juncea) resistant to herbicide phosphinothricin. Curr Sci 78:1358-1364
  68. Midorikawa K, Nagatoshi Y, Nakamura T (2009) A selection system for transgenic Arabidopsis thaliana using potassium thiocyanate as the selective agent and AtHOL1 as the selective marker. Plant Biotechnol 26:341-344 https://doi.org/10.5511/plantbiotechnology.26.341
  69. Mietkiewska E, Hoffman TL, Brost JM (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619-627 https://doi.org/10.1007/s11032-008-9204-4
  70. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193-232 https://doi.org/10.1016/j.jbiotec.2003.10.011
  71. Moloney MM, Walker JM, Sharma KK (1989) High-efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238-242 https://doi.org/10.1007/BF00778542
  72. Mukhopadhyay A, Topfer R, Pradhan AK, Sodhi YS, Steinbiss HH, Schell J, Pental D (1991) Efficient regeneration of Brassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep 10:375-379
  73. Murata M, Orton TJ (1987) Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Cult 11:111-123 https://doi.org/10.1007/BF00041844
  74. Narasimhulu SB, Kirti PB, Mohapatra T, Prakash S, Chopra VL (1992) Shoot regeneration in stem explants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359-362
  75. Nugent GD, Coyne S, Ngyuen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135-142 https://doi.org/10.1016/j.plantsci.2005.08.020
  76. Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.). Plant Cell Rep 14:13-17
  77. Ostergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter resistant fruit produced by ectopic expression of the FRUITFULL gene in Brassica juncea. Plant Biotechnol 4:45-51 https://doi.org/10.1111/j.1467-7652.2005.00156.x
  78. Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed. 115:209-225 https://doi.org/10.1111/j.1439-0523.1996.tb00907.x
  79. Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467-474 https://doi.org/10.1111/j.1399-3054.1993.tb01361.x
  80. Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyls explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685-690 https://doi.org/10.1007/BF00231925
  81. Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenesmediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229-242 https://doi.org/10.1023/A:1011338322000
  82. Puddephat IJ, Thompson N, Robinson HT Sandhu P, Henderson J (1999) Biolistic transformation of broccoli (Brassica oleracea var. Italica) for transient expression of the ${\beta}$-glucuronidase gene. J Hortic Sci Biotechnol 74:714-720
  83. Purty RS, Gautam K, Singla-Pareek SL (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39-49 https://doi.org/10.1007/s12298-008-0004-4
  84. Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67-72 https://doi.org/10.1023/A:1009658128964
  85. Radchuck V, Ryschka U, Schumann G, Klocke E (2002) Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. Physiol Plant 114:429-438 https://doi.org/10.1034/j.1399-3054.2002.1140313.x
  86. Radke SE, Andrews BM, Moloney MM, Crouch ML, Krid JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685-694
  87. Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127-132
  88. Rukavtsova EB, Zakharchenko NS, Pigoleva SV, Yukhmanova AA, Chebotareva EN, Bur'yanov YaI (2009) Obtaining marker-free transgenic plants. Biochem Bioph 426:143-146
  89. Sasaki H (2002) Brassinolide promotes adventitious shoot regeneration from cauliflower hypocotyl segments. Plant Cell Tiss Organ Cult 71:111-116 https://doi.org/10.1023/A:1019913604202
  90. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial micoRNAs in Arabidopsis. Plant Cell 18:1121-1133 https://doi.org/10.1105/tpc.105.039834
  91. Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238-253 https://doi.org/10.1016/0147-619X(78)90042-2
  92. Sethi U, Basu A, Mukherjee SG (1990) Role of inhibitors in the induction of differentiation in callus cultures of Brassica, Datura and Nicotiana. Plant Cell Rep 8:598-600 https://doi.org/10.1007/BF00270062
  93. Sikdar S, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20-24 https://doi.org/10.1007/s002990050525
  94. Singh VV, Verma V, Pareek AK, Mathur M, Yadav R, Goyal P, Thakur AK, Singh YP, Koundal KR, Bansal KC, Mishra AK, Kumar A, Kumar S (2009) Optimization and development of regeneration and transformation protocol in Indian mustard using lectin gene from chickpea [Cicer arietinum (L.)] .J of Plant Breeding and Crop Sci1(9):306-310
  95. Somerville C, Koorneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883-889
  96. Sparrow PAC, Dale PJ, Irwin JA (2006b) Brassica oleracea. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJ
  97. Sparrow PAC, Snape JW, Dale PJ, Irwin JA (2006a) The rapid identification of B. napus genotypes, for high-throughput transformation, using phenotypic tissue culture markers. Acta Hortic 706:239-247
  98. Sparrow PAC, Townsend T, Morgan CL, Arthur AE, Dale PJ, Irwin JA (2004) Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet 108:1249-1255 https://doi.org/10.1007/s00122-003-1539-y
  99. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828-8833 https://doi.org/10.1073/pnas.1430924100
  100. Sundar IK, Sakhtivel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698-1716 https://doi.org/10.1016/j.jplph.2008.08.002
  101. Takasaki T, Hatakeyama K, Hinata K (2004) Effect of silver nitrate on shoot regeneration and Agrobacterium-mediated transformation of Turnip (Brassica rapa L. var. rapifera). Plant Biotechnol 21(3):225-228 https://doi.org/10.5511/plantbiotechnology.21.225
  102. Tang GX, Zhou WJ, Li HZ, Mao BZ, He ZH, Yoneyama K (2003) Medium, explant and genotype factors influencing shoot regeneration in oilseed Brassica spp. J Agron Crop Sci 189:351-358 https://doi.org/10.1046/j.1439-037X.2003.00060.x
  103. Teo W, Lakshmanan P, Kumar P, Goh CJ, Swarup S (1997) Direct shoot formation and plant regeneration from cotyledon explants of rapid-cycling Brassica rapa. In Vitro Cell Dev Biol Plant 33:288-292 https://doi.org/10.1007/s11627-997-0052-4
  104. Upadhyaya CP, Nookaraju A, Gururani MA, Upadhyaya DC, Kim DH, Chun SC, Park SW (2010) An update on the progress towards the development of marker-free transgenic plants. Botanical Studies 51:277-292
  105. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol 43:383-403 https://doi.org/10.1007/s11627-007-9096-8
  106. Verma SS, Chiinnusarny V, Bansal KC (2008) A simplified floral dip method for transformation of Brassica napus and B. carinata. J Plant Biochem Biotechnol 17:197-200 https://doi.org/10.1007/BF03263286
  107. Wahlroos T, Susi P, Tylkina L, Malyshenko S, Zvereva S, Korpela T (2003) Agrobacterium-mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiol and Biochem 41 (9):773-778 https://doi.org/10.1016/S0981-9428(03)00119-0
  108. Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274-281 https://doi.org/10.1007/s00299-003-0691-9
  109. Warwick SI, Gugel R, McDonald T et al (2006) Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada. Genet Resour Crop Evol 53: 297-312 https://doi.org/10.1007/s10722-004-6108-y
  110. Warwick SI, Légère A, Simard MJ et al (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387-1395 https://doi.org/10.1111/j.1365-294X.2007.03567.x
  111. Warwick SI, Simard MJ, Légère A et al (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L, Raphanus raphanistrum L, Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor Appl Genet 107:528-539 https://doi.org/10.1007/s00122-003-1278-0
  112. Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sci Lett 24:117-121 https://doi.org/10.1016/0304-4211(82)90016-5
  113. Yan JY, He YK, Cao JS (2004) Factors affecting transformation efficiency by micro-injecting Agrobacterium into flower bud of Chinese cabbage. Agric Sci China 3:44-51
  114. Yang MZ, Jia SR, Pua EC (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tiss Organ Cult 24:79-82 https://doi.org/10.1007/BF00039734
  115. Yang ZH, Jin H, Plaha P, Woong BT, Jiang GB, Woo JG, Yun HD, Lim YP, Lee HY (2004) An improved regeneration protocol using cotyledonary explants from inbred lines of Chinese cabbage (Brassica rapa ssp. pekinensis). J Plant Biotechnol 6:235-239
  116. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249-257 https://doi.org/10.1046/j.1365-313X.1999.00520.x
  117. Zhandong Y, Shuangyi Z, Qiwei H (2007) High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci 172:920-929 https://doi.org/10.1016/j.plantsci.2006.12.018
  118. Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 19:569-575 https://doi.org/10.1007/s002990050775
  119. Zhang FL, Takahata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 17:780-786 https://doi.org/10.1007/s002990050482
  120. Ziv M (1991) Quality of micropropagated plants-vitrification. In Vitro Cell Dev Biol Plant 27:64-69 https://doi.org/10.1007/BF02632130

Cited by

  1. Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing vol.13, pp.3, 2013, https://doi.org/10.1007/s10142-013-0324-5