• Title/Summary/Keyword: aqueous tea power

Search Result 6, Processing Time 0.02 seconds

Antioxidant Effect of Aqueous Green Tea on Soybean Oil (녹차 수용성 추출물의 대두유에 대한 항산화효과)

  • 박복희;최희경;조희숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.552-556
    • /
    • 2001
  • The purpose of this study was to investigate the antioxidant effect of aqueous green tea(AGT) on soybean oil. AGT was freeze-dried and 20% of the freeze-dried aqueous green tea powder (AGTP) was added to soybean oil in the quantities of 0.5%, 1% and 5%. Soybean oil without the addition of AGTP was used as a control. Soybean oil with 0.02% butylated hydroxytoluen(BHT) was used as another experimental sample. Each sample was stored at 6$0^{\circ}C$ for 15 days. The oxidation of these samples was determined by measuring the acid value (AV), peroxide value (POV), and thiobarbituric acid (TBA) value. The result showed that the acid values were lowest in 0.02% BHT, followed by the 0.5% AGTP, 1% AGTP, 5% AGTP and finally the control. When AGTP was added, the peroxide value was lower than both the control and 0.02% BHT. The lowest TBA values were in the 0.5% AGTP followed by 0.02% BHT, 1% AGTP, 5% AGTP and the control, respectively. The 5% AGTP (285 min), 1% AGTP (249 min) and 0.5% AGTP (238) demonstrated longer induction periods, compared to the control (204 min) and the BHT (229 min) by Rancimat method.

  • PDF

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun;Lim, Jin Ah;Jeong, Soon Kwan;Yoon, Yeo Il;Bae, Shin Tae;Nam, Sung Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.783-787
    • /
    • 2013
  • The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.

Antioxidant and Neuronal Cell Protective Effects of Aqueous Extracts from Lotus Leaf Tea

  • Jeong, Chang-Ho;Jeong, Hee-Rok;Choi, Sung-Gil;Heo, Ho Jin
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.115-127
    • /
    • 2012
  • Antioxidant and neuronal cell protective effects of aqueous extract from lotus (Nelumbo nucifera) leaf tea (LLTE) were investigated. The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging effect, ferric reducing antioxidant power, and malondialdehyde inhibition of LLTE were increased in a dose dependent manner. Intracellular reactive oxygen species accumulation resulting from hydrogen peroxide ($H_2O_2$) treatment was significantly reduced when LLTE were present in the media compared to PC12 cells treated with $H_2O_2$ only. In neuronal cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), LLTE showed protective effect against $H_2O_2$-induced neurotoxicity. In addition, lactate dehydrogenase release into medium was also inhibited by LLTE (7.13-43.89%). Total phenolics of LLTE were 33.16 mg/g and a quercetin was identified as major phenolics (105.93 mg/100g). Therefore, above these data suggest that LLTE including quercetin may be useful in the natural antioxidant substance, and may reduce the risk of neurodegenerative disease.

Neuronal Cell Protection and Antioxidant Activities of Hot Water Extract from Commercial Buckwheat Tea (시판 메밀차 열수 추출물의 항산화 및 신경세포 보호효과)

  • Jeong, Chang-Ho;Jeong, Hee-Rok;Choi, Sung-Gil;Shim, Ki-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.358-365
    • /
    • 2011
  • The antioxidant and neuronal cell-protective effects of hot water extract from commercial buckwheat tea (CBTE) were evaluated. The 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP), and malondialdehyde (MDA) inhibitory effect of the CBTE increased in a dose-dependent manner. The Intracellular reactive oxygen species (ROS) accumulation that resulted from hydrogen peroxide ($H_2O_2$) treatment more significantly decreased when CBTE was present in the media than when the PC12 cells were treated only with $H_2O_2$. In the neuronal cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), the aqueous extracts showed a protective effect against $H_2O_2$-induced neurotoxicity, and the lactate dehydrogenase (LDH) release into the medium was also inhibited by CBTE. The total phenolics of CBTE was 9,608.10 mg/100 g, and the major phenolic compounds were rutin (13.42 mg/100 g) and quercitrin (0.90 mg/100 g). These data suggested that CBTE, including the aforementioned phenolics, may be useful in reducing the risk of neurodegenerative disease.

Studies on the New Analytical Methods for Separation and Recovery of Rare Earth Metals (I) : Adsorption Characteristics of U(VI) Ion by New Synthetic Resins with Macrocyclic Compounds (희토류금속 분리 및 회수를 위한 분석화학적 연구 (제1보) : 우라늄(VI)의 분리회수를 위한 선택이온교환수지 합성과 우라늄(VI) 금속이온의 흡착특성)

  • Jung Oh Jin;Hak Jin Jung;Joon Tea Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.358-370
    • /
    • 1988
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, 4%, and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium, rare earths and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat at $280^{\circ}C$. The $UO_2^{+2}$ aqueous solution are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+},\;Cu^{2+}\;and\;Nd^{3+}$.

  • PDF

Contaminant Mechanism and Management of Tracksite of Pterosaurs, Birds, and Dinosaurs in Chungmugong-dong, Jinju, Korea (천연기념물 진주 충무공동 익룡·새·공룡발자국 화석산지의 오염물 형성 메커니즘과 관리방안)

  • Myoungju Choie;Sangho Won;Tea Jong Lee;Seong-Joo Lee;Dal-Yong Kong;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.715-728
    • /
    • 2023
  • Tracksite of pterosaurs, birds, and dinosaurs in Chungmugong-dong in Jinju was designated as a natural monument in 2011 and is known as the world's largest in terms of the number and density of pterosaur footprints. This site has been managed by installing protection buildings to conserve in 2018. About 17% of the footprints of pterosaur, theropod, and ornithopod in this site under management in the 2nd protection building are of great academic value, but observation of footprints has difficulties due to continuous physical and chemical damage. In particular, the accumulation of milk-white contaminants is formed by the gypsum and air pollutant complex. Gypsum remains evaporated with a plate or columnar shape in the process of water circulation around the 2nd protection building, and the dust is from through the inflow of the gallery windows. The aqueous solution of gypsum, consisting of calcium from the lower bed and sulfur from grass growth, is catchmented into the groundwater from the area behind the protection building. Pollen and a few minerals other constituents of contaminants, go through the gallery window, which makes it difficult to expel dust. To conserve the fossil-bearing beds from two contaminants of different origins, controlling the water and atmospheric circulation of the 2nd protection building and removing the contaminants continuously is necessary. When cleaning contaminants, the steam cleaning method is sufficiently effective for powder-shaped milk-white contaminants. The fossil-bearing bed consists of dark gray shale with high laser absorption power; the laser cleaning method accompanies physical loss to fossils and sedimentary structures; therefore, avoiding it as much as possible is desirable.