• 제목/요약/키워드: aquaporin membrane

검색결과 25건 처리시간 0.018초

한우의 정상 난포와 난포낭종 난포에서 Aquaporin7 발현 양상 (Patterns of Aquaporin 7 Expression in Normal Follicles and Follicular Cyst Follicles of Hanwoo)

  • 김창운;한신규;최창용
    • 한국수정란이식학회지
    • /
    • 제30권1호
    • /
    • pp.17-21
    • /
    • 2015
  • Alteration in ion channel or transporter expression levels affects cell volume which is produced by movement of water and ion across the plasma membrane. In particular, aquaporin (AQP) channels among ion channels play a crucial role in movement of water across the cell membrane. This study was performed to identify whether AQP expression is changed in bovine follicular cystic follicles using microarray, RT-PCR and Western blotting analyses. In microarray data, AQP4 expression was decreased, whereas AQP7 was increased in cystic follicles. Additional experiments were focused on the AQP7 expression increased in cystic follicles. The microarray data was confirmed by semi-quantitative polymerase chain reaction (PCR) and Western blot analysis. AQP7 mRNA and protein expressions were significantly increased in the cystic follicles (p<0.05). Application of estrogen ($10{\mu}g/ml$) to bovine ovarian cells showed a trend of increase in AQP7 expression. From these results, we suggest that the increase in AQP7 expression in cystic follicles may play an important role in movement of water in bovine ovary. In addition, AQP7, a aquaglyceroporin permeating water and glycerol, could be a good target in development of methods for the cryopreservation of bovine ovary.

생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석 (Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane)

  • 최욱;배하림;이형근;이종휘;김종학;박철호
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.317-322
    • /
    • 2015
  • 염분차발전은 해수와 담수가 지속적으로 공급되는 곳에 설치된다면 다른 신재생에너지원에 비해 24시간 지속적으로 전력을 생산할 수 있는 시스템이다. 발전량은 물투과도 및 염배제율에 의해 결정되기 때문에, 세포막에 존재하는 물반투과 단백질인 아쿠아포린 분리막을 이용한 압력지연삼투법을 연구하였다. 염으로는 NaCl과 이온선택성 확인을 위하여 $NaNO_3$이 사용되었다. 생체모방형 아쿠아포린 분리막의 물투과량은 2 M 이하의 농도에서 거의 나타나지 않았다. 더욱이, 3 M 이상의 농도에서 유도용액의 농도에 따른 물투과량 차이 및 이온선택도 또한 크게 나타나지 않았다. 따라서 생체모방형 아쿠아포린 분리막은 압력지연삼투 공정에 적용하기 어렵지만, 만약 이를 극복할 수 있는 구조체가 개발된다면 세포에서의 성능치를 기대할 수 있을 것이다.

Loss of Aquaporin-3 in Placenta and Fetal Membranes Induces Growth Restriction in Mice

  • Seo, Min Joon;Lim, Ju Hyun;Kim, Dong-Hwan;Bae, Hae-Rahn
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권3호
    • /
    • pp.263-273
    • /
    • 2018
  • Aquaporin (AQP) 3, a facilitated transporter of water and glycerol, expresses in placenta and fetal membranes, but the detailed localization and function of AQP3 in placenta remain unclear. To elucidate a role of AQP3 in placenta, we defined the expression and cellular localization of AQP3 in placenta and fetal membranes, and investigated the structural and functional differences between wild-type and AQP3 null mice. Gestational sacs were removed during mid-gestational period and amniotic fluid was aspirated for measurements of volume and composition. Fetuses with attached placenta and fetal membranes were weighed and processed for histological assessment. AQP3 strongly expressed in basolateral membrane of visceral yolk sac cells of fetal membrane, the syncytiotrophoblasts of the labyrinthine placenta and fetal nucleated red blood cell membrane. Mice lacking AQP3 did not exhibit a significant defect in differentiation of trophoblast stem cells and normal placentation. However, AQP3 null fetuses were smaller than their control litter mates in spite of a decrease in litter size. The total amniotic fluid volume per gestational sac was reduced, but the amniotic fluid-to-fetal weight ratio was increased in AQP3 null mice compared with wild-type mice. Glycerol, free fatty acid and triglyceride levels in amniotic fluid of AQP3 null mice were significantly reduced, whereas lactate level increased when compared to those of wild-type mice. These results suggest a role for AQP3 in supplying nutrients from yolk sac and maternal blood to developing fetus by facilitating transport of glycerol in addition to water, and its implication for the fetal growth in utero.

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo;Kim, Tae-Hee;Wang, Tong
    • Childhood Kidney Diseases
    • /
    • 제20권1호
    • /
    • pp.11-17
    • /
    • 2016
  • Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

절수시 Mongolian gerbil (Meriones unguiculatus) 콩팥의 Aquaporin 2, Aquaporin 4 발현변화 (Upregulation of aquaporin 2 and aquaporin 4 in the water-deprived mongolian gerbil (Meriones unguiculatus) kidney)

  • 송지현;권진석;김용환;박용덕;한기환;류시윤;정주영
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.363-370
    • /
    • 2007
  • Mongolian gerbil (Meriones unguiculatus) has been as an model animal for studing the neurological disease such as stroke and epilepsy because of the congenital incompleteries in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animal. Aquaporin 2 (AQP2) expressed at the surface of principal cells in collecting duct results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. Aquaporin 4 (AQP4), which is expressed in cell in a wide range of organ, is also present in the collecting duct principal cells where this is abundant in the basolateral plasma membranes and represent potential exit pathways from the cell for water entering via AQP2. In this research, we divide 3 groups of which each group include the 5 animals. In the study of 7 or 14 days water restricted condition, we investigated the AQP2 and AQP4 by using a quantitative immunohistochemistry in the kidney. The results obtained in this study were summarized as followings. AQP2 is abundant in the apical plasma membrane and apical vesicles in the collecting duct principal cell and at rare abundance in connecting tubules. In the water-deprived Mongolian gerbil kidney, expression of AQP2 was continuosly increased in the cortical collecting duct and inner medullary collecting duct. This increase was both the apical region and cytoplasm. AQP4 is mainly expressed in the inner medulla, although some expression is also noted in the more proximal segment. In the water-deprived Mongolian gerbil kidney, AQP4 was also increased in the inner medullary collecting duct. Immunoactivity was increased in entire inner medullary collecting duct and newly detected in cytoplasm of principal cell. These findings suggest that increased levels of AQP2 and AQP4 in the cortical and inner medulalry collecting duct may play a important role for maintain fluid balance in the water-deprived kidney.

Decreased Expression of Aquaporin-2 Water Channels in the Kidney in Rats Treated with Reserpine

  • Lee, Jong-Un;Oh, Yoon-Wha;Kim, Sun-Mi;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.307-313
    • /
    • 2001
  • Whether there exists a sympathetic neural mechanism regulating the expression of aquaporin (AQP) water channels in the kidney was investigated. Male Sprague-Dawley rats were treated with reserpine (1 mg/kg, IP), and the expression of AQP1-4 proteins was determined in the kidney one day thereafter. Following the treatment with reserpine, the systolic blood pressure measured in a conscious state was significantly decreased in the experimental group compared with that in the control $(83{\pm}8\;vs\;124{\pm}6\;mmHg;\;n=6\;each,\;P<0.05)$. The expression of AQP2 proteins was decreased in the cortex, outer medulla, and inner medulla. The decrease of AQP2 proteins was in parallel in the membrane and the cytoplasmic fractions, suggesting a preserved AQP2 targeting. No significant changes were observed in the expression of AQP1, AQP3, or AQP4. Neither basal nor AVP-stimulated formation of cAMP was significantly altered. These results suggest that the sympathetic nervous system has a tonic stimulatory effect specifically on the expression of AQP2 water channels in the kidney.

  • PDF

만성 경막하 혈종(Chronic subdural hematoma, CSDH)에 대한 오령산 증례보고 2례 (Two Case Studies of the Use of Oreong-san for a Chronic Subdural Hematoma)

  • 정윤경;김수빈;양정윤;문상관;정우상;권승원;조기호
    • 대한한방내과학회지
    • /
    • 제38권2호
    • /
    • pp.259-263
    • /
    • 2017
  • We describe the cases of two patients with chronic subdural hematomas who were treated with Oreong-san. The patients' symptoms improved, as verified by brain computed tomography imaging. Oreong-san may control membrane permeability by inhibiting the aquaporin channel of the outer membrane of a hematoma. We speculate that hydrostatic modulation is a key mechanism underlying the effectiveness of Oreong-san in the treatment of subdural hematomas.

Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

  • Park, Jae-Won;Shin, Yun Kyung;Choen, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2014
  • Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

Differential Expressions of Aquaporin Subtypes in Female Reproductive Tract of Mice

  • Im, Ji Woo;Lee, Chae Young;Kim, Dong-Hwan;Bae, Hae-Rahn
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권3호
    • /
    • pp.177-185
    • /
    • 2020
  • Although many aquaporin (AQP) transcripts have been demonstrated to express in the female reproductive tract, the defined localizations and functions of AQP subtype proteins remain unclear. In this study, we investigated the expression of AQP1, AQP3, AQP5, AQP6, and AQP9 proteins in female reproductive tract of mouse and characterized their precise localizations at the cellular and subcellular levels. Immunofluorescence analyses for AQP1, AQP3, AQP6, and AQP9 showed that these proteins were abundantly expressed in female reproductive tract and that intense immunoreactivities were observed in mucosa epithelial cells with a subtype-specific pattern. The most abundant aquaporin in both vagina and uterine cervix was AQP3. Each of AQP1, AQP3, AQP6, and AQP9 exhibited its distinct distribution in stratified squamous or columnar epithelial cells. AQP9 expression was predominant in oviduct and ovary. AQP1, AQP3, AQP6, and AQP9 proteins were mostly seen in apical membrane of ciliated epithelial cells of the oviduct as well as in both granulosa and theca cells of ovarian follicles. Most of AQP subtypes were also expressed in surface epithelial cells and glandular cells of endometrium in the uterus, but their expression levels were relatively lower than those observed in the vagina, uterine cervix, oviduct and ovary. This is the first study to investigate the expression and localization of 5 AQP subtype proteins simultaneously in female reproductive tract of mouse. Our results suggest that AQP subtypes work together to transport water and glycerol efficiently across the mucosa epithelia for lubrication, proliferation, energy metabolism and pH regulation in female reproductive tract.

Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport

  • Gu, Riliang;Chen, Xiaoling;Zhou, Yuling;Yuan, Lixing
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.96-101
    • /
    • 2012
  • Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.