DOI QR코드

DOI QR Code

Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport

  • Gu, Riliang (Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, MOE, College of Environmental and Resources Sciences, China Agricultural University) ;
  • Chen, Xiaoling (Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, MOE, College of Environmental and Resources Sciences, China Agricultural University) ;
  • Zhou, Yuling (Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, MOE, College of Environmental and Resources Sciences, China Agricultural University) ;
  • Yuan, Lixing (Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, MOE, College of Environmental and Resources Sciences, China Agricultural University)
  • Received : 2011.10.12
  • Accepted : 2011.10.21
  • Published : 2012.02.29

Abstract

Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.

Keywords

References

  1. Kojima, S., Bohner, A., Gassert, B., Yuan, L. and von Wiren, N. (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant. J. 52, 30-40. https://doi.org/10.1111/j.1365-313X.2007.03223.x
  2. Watson, C. J., Miller, H., Poland, P., Kilpatrick, D. J., Allen, M. D. B., Garrett, M. K. and Christianson, C. B. (1994) Soil properties and the ability of the urease inhibitor N-(n-BUTYL) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biol. Biochem. 26, 1165-1171. https://doi.org/10.1016/0038-0717(94)90139-2
  3. Marschner, H. (1995) Mineral Nutrition of Higher Plants. Academic Press, London, UK.
  4. Hine, J. C. and Sprent, J. I. (1988) Growth of phaseolus vulgaris on various nitrogen sources: the importance of urease. J. Exp. Bot. 39, 1505-1512. https://doi.org/10.1093/jxb/39.11.1505
  5. Gerendas, J., Zhu, Z. and Sattelmacher, B. (1998) Influence of N and Ni supply on nitrogen metabolism and urease activity in rice (Oryza sativa L.). J. Exp. Bot. 49, 1545-1554. https://doi.org/10.1093/jexbot/49.326.1545
  6. Krogmeier, M. J., McCarty, G. W. and Bremner, J. M. (1989) Phytotoxicity of foliar-applied urea. Proc. Natl. Acad. Sci. U.S.A. 86, 8189-8191. https://doi.org/10.1073/pnas.86.21.8189
  7. Wilson, M. R., O'Donohue, S. I. and Walker, N. A. (1988) The transport and metabolism of urea in Chara australis. J. Exp. Bot. 39, 763-774. https://doi.org/10.1093/jxb/39.6.763
  8. Liu, L. H., Ludewig, U., Frommer, W. B. and von Wiren, N. (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell. 15, 790-800. https://doi.org/10.1105/tpc.007120
  9. Kojima, S., Bohner, A. and von Wiren, N. (2006) Molecular mechanisms of urea transport in plants. J. Membrane Biol. 212, 83-91. https://doi.org/10.1007/s00232-006-0868-6
  10. Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A. R. and Kjellbom, P. (2001) The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126, 1358-1369. https://doi.org/10.1104/pp.126.4.1358
  11. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J. and Jung, R. (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant. Physiol. 125, 1206-1215. https://doi.org/10.1104/pp.125.3.1206
  12. Gerbeau, P., Guclu, J., Ripoche, P. and Maurel, C. (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18, 577-587. https://doi.org/10.1046/j.1365-313x.1999.00481.x
  13. Klebl, F., Wolf, M. and Sauer, N. (2003) A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana [delta]-TIP or [gamma]-TIP. FEBS Letters. 547, 69-74. https://doi.org/10.1016/S0014-5793(03)00671-9
  14. Liu, L. H., Ludewig, U., Gassert, B., Frommer, W. B. and von Wiren, N. (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133, 1220-1228. https://doi.org/10.1104/pp.103.027409
  15. Chaumont, F., Barrieu, F., Jung, R. and Chrispeels, M. J. (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol. 122, 1025-1034. https://doi.org/10.1104/pp.122.4.1025
  16. Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M. (2006) A silicon transporter in rice. Nature 440, 688-691. https://doi.org/10.1038/nature04590
  17. Gao, Z., He, X., Zhao, B., Zhou, C., Liang, Y., Ge, R., Shen, Y. and Huang, Z. (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol. 51, 767-775. https://doi.org/10.1093/pcp/pcq036
  18. Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E. J., Mazzella, A., Amodeo, G. and Muschietti, J. (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64, 1038-1047. https://doi.org/10.1111/j.1365-313X.2010.04395.x
  19. Denning, G., Kabambe, P., Sanchez, P., Malik, A., Flor, R., Harawa, R., Nkhoma, P., Zamba, C., Banda, C., Magombo, C., Keating, M., Wangila, J. and Sachs, J. (2009) Input subsidies to improve smallholder maize productivity in Malawi: toward an african green revolution. PLoS Biol. 7, e23 https://doi.org/10.1371/journal.pbio.1000023
  20. Mitani, N., Yamaji, N. and Ma, J. F. (2009) Identification of maize silicon influx transporters. Plant Cell Physiol. 50, 5-12 https://doi.org/10.1093/pcp/pcn110
  21. Tallberg, P., Koski-Vahala, J. and Hartikainen, H. (2002) Germanium-68 as a tracer for silicon fluxes in freshwater sediment. Water Res. 36, 956-962. https://doi.org/10.1016/S0043-1354(01)00312-8
  22. Gaspar, M., Bousser, A., Sissoeff, I., Roche, O., Hoarau, J. and Mahe, A. (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci. 165, 21-31. https://doi.org/10.1016/S0168-9452(03)00117-1
  23. Yamaji, N., Mitatni, N. and Ma, J. F. (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20, 1381-1389. https://doi.org/10.1105/tpc.108.059311
  24. Mitani, N., Yamaji, N. and Ma, J. F. (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Archiv. Eur. J. Physiol. 456, 679-686. https://doi.org/10.1007/s00424-007-0408-y
  25. Zhao, F.-J., Ago, Y., Mitani, N., Li, R.-Y., Su, Y.-H., Yamaji, N., McGrath, S. P. and Ma, J. F. (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol. 186, 392-399. https://doi.org/10.1111/j.1469-8137.2010.03192.x
  26. Zhao, X. Q., Mitani, N., Yamaji, N., Shen, R. F. and Ma, J. F. (2010) Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice. Plant Physiol. 153, 1871-1877. https://doi.org/10.1104/pp.110.157867
  27. Mitani, N., Yamaji, N., Zhao, F. J. and Ma, J. F. (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J. Exp. Bot. 62, 4391-4398. https://doi.org/10.1093/jxb/err158
  28. Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S. A., Tyerman, S. D., Langridge, P. and Sutton, T. (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 153, 1706-1715. https://doi.org/10.1104/pp.110.158832
  29. Duarte, J. M., Cui, L., Wall, P. K., Zhang, Q., Zhang, X., Leebens-Mack, J., Ma, H., Altman, N. and dePamphilis, C. W. (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol. 23, 469-478. https://doi.org/10.1093/molbev/msj051
  30. Loque, D., Lalonde, S., Looger, L. L., von Wiren, N. and Frommer, W. B. (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446, 195-198. https://doi.org/10.1038/nature05579
  31. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W. R. (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5-17. https://doi.org/10.1104/pp.105.063743

Cited by

  1. Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses vol.247, pp.2, 2014, https://doi.org/10.1007/s00232-013-9618-8
  2. Molecular identification and functional analysis of a maize (Zea mays) DUR3 homolog that transports urea with high affinity vol.241, pp.4, 2015, https://doi.org/10.1007/s00425-014-2219-7
  3. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms 2017, https://doi.org/10.1016/j.plantsci.2017.07.021
  4. Expression Analysis of Sugarcane Aquaporin Genes under Water Deficit vol.2013, 2013, https://doi.org/10.1155/2013/763945
  5. Identification, and Functional and Expression Analyses of the CorA/MRS2/MGT-Type Magnesium Transporter Family in Maize vol.57, pp.6, 2016, https://doi.org/10.1093/pcp/pcw064
  6. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses 2014, https://doi.org/10.3109/07388551.2014.973367
  7. A ginseng PgTIP1 gene whose protein biological activity related to Ser128 residue confers faster growth and enhanced salt stress tolerance in Arabidopsis vol.234, 2015, https://doi.org/10.1016/j.plantsci.2015.02.001
  8. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity vol.06, pp.18, 2015, https://doi.org/10.4236/ajps.2015.618275
  9. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1 vol.56, pp.8, 2015, https://doi.org/10.1093/pcp/pcv067
  10. New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants Under Drought Stress and Possible Implications for Plant Performance vol.27, pp.4, 2014, https://doi.org/10.1094/MPMI-09-13-0268-R
  11. The Interactions of Aquaporins and Mineral Nutrients in Higher Plants vol.17, pp.8, 2016, https://doi.org/10.3390/ijms17081229
  12. Physiological and molecular responses in tomato under different forms of N nutrition vol.216, 2017, https://doi.org/10.1016/j.jplph.2017.05.013
  13. Transcriptomic Analysis Highlights Reciprocal Interactions of Urea and Nitrate for Nitrogen Acquisition by Maize Roots vol.56, pp.3, 2015, https://doi.org/10.1093/pcp/pcu202
  14. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings vol.7, 2016, https://doi.org/10.3389/fpls.2016.00845
  15. Molecular and physiological interactions of urea and nitrate uptake in plants vol.11, pp.1, 2016, https://doi.org/10.1080/15592324.2015.1076603
  16. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.08.011
  17. The Urease Inhibitor NBPT Negatively Affects DUR3-mediated Uptake and Assimilation of Urea in Maize Roots vol.6, 2015, https://doi.org/10.3389/fpls.2015.01007
  18. The maize CorA/MRS2/MGT-type Mg transporter, ZmMGT10, responses to magnesium deficiency and confers low magnesium tolerance in transgenic Arabidopsis 2017, https://doi.org/10.1007/s11103-017-0645-1
  19. Role of Aquaporins in Determining Carbon and Nitrogen Status in Higher Plants vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010035
  20. Plant and Mammal Aquaporins: Same but Different vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020521
  21. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01143
  22. Exploring the Roles of Aquaporins in Plant–Microbe Interactions vol.7, pp.12, 2018, https://doi.org/10.3390/cells7120267