Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.2.317

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane  

Choi, Wook (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER))
Bae, Harim (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
Lee, Hyung-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER))
Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
Publication Information
Polymer(Korea) / v.39, no.2, 2015 , pp. 317-322 More about this Journal
Abstract
Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.
Keywords
pressure-retarded osmosis; aquaporin membrane; salinity gradient power;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. S. Vacancies, Inter. Energy Agency Report, 1, 1 (2012).
2 R. E. Pattle, Nature, 174, 660 (1954).   DOI
3 S. E. Skilhagen, J. E. Dugstad, and R. J. Aaberg, Desalination 220, 476 (2008).   DOI   ScienceOn
4 C. E. Reid and E. J. Breton, J. Appl. Polym. Sci., 1, 133 (1595).
5 I. L. Alsvik and M-B. Hagg, Polymers, 5, 303 (2013).   DOI
6 K. Scott, "Water purification", in Handbook of industrial membrane, K. Scott, Editor, Elsevier Science, Oxford, Vol 2, p 489 (1990).
7 R. Zimmermann, Ang. Chem. Int. Ed., 5, 749 (1966).
8 L. Credali and P. Parrini, Polymer, 12, 717 (1971).   DOI   ScienceOn
9 K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci., 370, 1 (2011).   DOI   ScienceOn
10 J. E. Cadotte, U.S. Patent 4277344A (1981).
11 B.-H. Jeong, E. Hoek, U. Yan, A. Subramani, X. Huang, G. Hurwitz, A. Ghosh, and A. Jawor, J. Membr. Sci., 294, 1 (2007).   DOI   ScienceOn
12 E. S. Kim, G. Hwang, M. G. EI-Din, and L. Yang, J. Membr. Sci., 394, 37 (2012).
13 M. Whitby, L. Cagnon, M. Thanou, and N. Quirke, Nano Lett., 8, 2632 (2008).   DOI   ScienceOn
14 M. Hu and B. Mi, Envir. Sci. Tech., 47, 3715 (2013).   DOI   ScienceOn
15 C.Y. Tang, Y. Zhao, R. Wang, C. Helix-Nielsen, and A. G. Fane, Desalination, 308, 34 (2013).   DOI   ScienceOn
16 M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, and W. Meier, Proceedings of the National Academy of Sciences, 104, 20719 (2007).   DOI   ScienceOn
17 A. Achill, T. Y. Cath, and A. E. Childress, J. Membr. Sci., 343, 42 (2009).   DOI   ScienceOn
18 E. Tajkhorshid, P. Nollert, M. Jensen, L. J. W. Miercke, J. O'connell, R. M. Stroud, and K. Schulten, Science, 296, 525 (2002).   DOI   ScienceOn
19 J. A. Wasastjerna, Soc. Sci. Fenn. Comm. Phys. Math., 37, 1A25 (1923).