• Title/Summary/Keyword: aquaporin

Search Result 134, Processing Time 0.027 seconds

Differential Expressions of Aquaporin Subtypes in Female Reproductive Tract of Mice

  • Im, Ji Woo;Lee, Chae Young;Kim, Dong-Hwan;Bae, Hae-Rahn
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • Although many aquaporin (AQP) transcripts have been demonstrated to express in the female reproductive tract, the defined localizations and functions of AQP subtype proteins remain unclear. In this study, we investigated the expression of AQP1, AQP3, AQP5, AQP6, and AQP9 proteins in female reproductive tract of mouse and characterized their precise localizations at the cellular and subcellular levels. Immunofluorescence analyses for AQP1, AQP3, AQP6, and AQP9 showed that these proteins were abundantly expressed in female reproductive tract and that intense immunoreactivities were observed in mucosa epithelial cells with a subtype-specific pattern. The most abundant aquaporin in both vagina and uterine cervix was AQP3. Each of AQP1, AQP3, AQP6, and AQP9 exhibited its distinct distribution in stratified squamous or columnar epithelial cells. AQP9 expression was predominant in oviduct and ovary. AQP1, AQP3, AQP6, and AQP9 proteins were mostly seen in apical membrane of ciliated epithelial cells of the oviduct as well as in both granulosa and theca cells of ovarian follicles. Most of AQP subtypes were also expressed in surface epithelial cells and glandular cells of endometrium in the uterus, but their expression levels were relatively lower than those observed in the vagina, uterine cervix, oviduct and ovary. This is the first study to investigate the expression and localization of 5 AQP subtype proteins simultaneously in female reproductive tract of mouse. Our results suggest that AQP subtypes work together to transport water and glycerol efficiently across the mucosa epithelia for lubrication, proliferation, energy metabolism and pH regulation in female reproductive tract.

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo;Kim, Tae-Hee;Wang, Tong
    • Childhood Kidney Diseases
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

Induction of anti-aquaporin 5 autoantibodies by molecular mimicry in mice

  • Lee, Ahreum;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • Molecular mimicry is the most common mechanism that breaches self-tolerance. We previously identified autoantibodies to aquaporin-5 (AQP5) in the sera of patients with Sjögren's syndrome and found that the aquaporin of Prevotella melaninogenica (PmAqp), an oral commensal, is highly homologous to human AQP5. This study aimed to test whether PmAqp can induce anti-AQP5 autoantibodies via molecular mimicry. From the amino acid sequence of PmAqp, an immunizing peptide; i.e., PmE-L, was designed, which contained both the B cell epitope "E" and T cell epitope. C57BL/6 and BALB/c mice were subcutaneously immunized with linear or cyclic forms of PmE-L emulsified in incomplete Freund's adjuvant. The concentrations of the antibodies in sera were measured using enzyme-linked immunosorbent assays. Both linear and cyclic PmE-L induced high levels of antibodies against not only the immunized peptides but also autoantibodies against AQP5E and antibodies against PmE, a Pm homolog of AQP5E. In C57BL/6 mice; however, the cyclic form of PmE-L was more efficient than the linear form in inducing autoantibodies against AQP5E that contained a cyclic epitope. The levels of anti-PmE antibodies and anti-AQP5E autoantibodies showed a strong positive correlation (r = 0.95, p < 0.0005), suggesting molecular mimicry. Collectively, the mice produced anti-AQP5E autoantibodies in response to a PmAqp-derived peptide. This model proved to be useful for studying the mechanisms of autoantibody production by molecular mimicry.

Effects of Sodium Fluoride on the Water Transport in Leaves of Barley and Rice under Salt Stress in the Light

  • Hwang, Hong-Jin;Oh, Kwang-Hoon;Park, Phun-Bum;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • The kinetics of the loss of leaf fresh weight during incubation of barley and rice leaves in 9% or 15% NaCl solutions were biphasic, indicating the existence of a controlling mechanism for water transport. The first rapid phases reached their plateaus within 1 and 2 h in the case of rice and barley leaves, respectively. When barley leaves were fed with sodium fluoride, an inhibitor of phosphatase inhibitor, through their epicotyls for 3 h in darkness, prior to the treatment of NaCl, the biphasic pattern shown during NaCl treatment was disappeared resulting in linear decreases in the relative fresh weights. The results suggest that NaF accelerates salt-induced water efflux from plant cells, possibly by inhibiting the protection mechanism that may act in NaF-untreated leaves. The linear water loss can be explained in terms of phosphorylation of aquaporin by blocking its dephosphorylation in the presence of the phosphatase inhibitor to keep aquaporin in a phosphorylated form. However, the effect of NaF shown in barley leaves were not observed in rice. These results suggest that the regulation of water transport depends on plant species, and the mechanism for the controlling water transport in rice is different from that of barley.

  • PDF

Decreased Expression of Aquaporin-2 Water Channels in the Kidney in Rats Treated with Reserpine

  • Lee, Jong-Un;Oh, Yoon-Wha;Kim, Sun-Mi;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.307-313
    • /
    • 2001
  • Whether there exists a sympathetic neural mechanism regulating the expression of aquaporin (AQP) water channels in the kidney was investigated. Male Sprague-Dawley rats were treated with reserpine (1 mg/kg, IP), and the expression of AQP1-4 proteins was determined in the kidney one day thereafter. Following the treatment with reserpine, the systolic blood pressure measured in a conscious state was significantly decreased in the experimental group compared with that in the control $(83{\pm}8\;vs\;124{\pm}6\;mmHg;\;n=6\;each,\;P<0.05)$. The expression of AQP2 proteins was decreased in the cortex, outer medulla, and inner medulla. The decrease of AQP2 proteins was in parallel in the membrane and the cytoplasmic fractions, suggesting a preserved AQP2 targeting. No significant changes were observed in the expression of AQP1, AQP3, or AQP4. Neither basal nor AVP-stimulated formation of cAMP was significantly altered. These results suggest that the sympathetic nervous system has a tonic stimulatory effect specifically on the expression of AQP2 water channels in the kidney.

  • PDF

The Role of Aquaporin-4 in Cerebral Edema Formation after Focal Cerebral Ischemia in Rats

  • Song, Young-Jin;Bae, Hae-Rahn;Ha, Se-Un;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.30-38
    • /
    • 2007
  • Objective : To elucidate the role of aquaporin-4[AQP4] in cerebral edema formation, we studied the expression and subcellular localization of AQP4 in astrocytes after focal cerebral ischemia. Methods : Cerebral ischemia were induced by permanent middle cerebral artery[MCA] occlusion in rats and estimated by the discoloration after triphenyltetrazolium chloride[TTC] immersion. Change of AQP4 expression were evaluated using western blot. Localization of AQP4 was assessed by confocal microscopy and its interaction with ${\alpha}-syntrophin$ was analyzed by immunoprecipitation. Results : After right MCA occlusion, the size of infarct and number of apoptotic cells increased with time. The ratio of GluR1/GluR2 expression also increased during ischemia. The polarized localization of AQP4 in the endfeet of astrocytes contacting with ventricles, vessels and pia mater was changed into the diffuse distribution in cytoplasm. The interactions of AQP4 and Kir with ${\alpha}-syntrophin$, an adaptor of dystrophin complex, were disrupted by cerebral ischemia. Conclusion : The deranged spatial buffering function of astrocytes due to mislocalized AQP4/Kir4.1 channel as well as increased assembly of $Ca^{2+}$ permeable AMPA receptors might contribute to the development of edema formation and the excitotoxic neuronal cell death during ischemia.

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane (생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석)

  • Choi, Wook;Bae, Harim;Lee, Hyung-Keun;Lee, Jonghwi;Kim, Jong Hak;Park, Chul Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.317-322
    • /
    • 2015
  • Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice

  • Ahreum Lee;Duck Kyun Yoo;Yonghee Lee;Sumin Jeon;Suhan Jung;Jinsung Noh;Soyeon Ju;Siwon Hwang;Hong Hee Kim;Sunghoon Kwon;Junho Chung;Youngnim Choi
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.34.1-34.16
    • /
    • 2021
  • Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.