• Title/Summary/Keyword: aptamer biomarker

Search Result 6, Processing Time 0.019 seconds

The Method Development for Biomarker Diagnosis Based on the Aptamer-protein Crosslink (앱타머와 단백질간 가교를 이용한 바이오마커 진단 방법 개발)

  • Lee, Bo-Rahm;Kim, Ji-Nu;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • The detection of biomarkers is an important issue for disease diagnosis. However, many systems are not suitable to detect the biomarker itself directly. For direct detection of biomarker proteins in human serum, a new affinity-capture method using aptamers combined with the mass spectrometry was suggested. Since signals from protein samples cannot be amplified, modified chromatin immunoprecipitation (ChIP) and subsequent cross-linking with formaldehyde between aptamers and target proteins were used not to lose the captured target proteins, which allowed us to perform a harsh washing step to remove the non-specifically bound proteins. As a model system, a thrombin aptamer was used as a bait and thrombin as a target protein. Using our modified ChIP and affinity-capture method, non-specific binding proteins on the beads decreased significantly, suggesting that our new method is efficient and can be applied to developing diagnosis systems for various biomarkers.

Clinical Validation of a Protein Biomarker Panel for Non-Small Cell Lung Cancer

  • Jung, Young Ju;Oh, In-Jae;Kim, Youndong;Jung, Jong Ha;Seok, Minkyoung;Lee, Woochang;Park, Cheol Kyu;Lim, Jung-Hwan;Kim, Young-Chul;Kim, Woo-Sung;Choi, Chang-Min
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.342.1-342.6
    • /
    • 2018
  • We validated the diagnostic performance of a previously developed blood-based 7-protein biomarker panel, $AptoDetect^{TM}$-Lung (Aptamer Sciences Inc., Pohang, Korea) using modified aptamer-based proteomic technology for lung cancer detection. Non-small cell lung cancer (NSCLC), 200 patients and benign nodule controls, 200 participants were enrolled. In a high-risk population corresponding to ${\geq}55years$ of age and ${\geq}30pack-years$, the diagnostic performance was improved, showing 73.3% sensitivity and 90.5% specificity with an area under the curve of 0.88. $AptoDetect^{TM}$-Lung (Aptamer Sciences Inc.) offers the best validated performance to discriminate NSCLC from benign nodule controls in a high-risk population and could play a complementary role in lung cancer screening.

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

  • Kong, Hoon Young;Byun, Jonghoe
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer (폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발)

  • Li, Jingjing;Si, Yunpei;Nde, Dieudonne Tanue;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.461-466
    • /
    • 2021
  • In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

Biomarker Detection on Aptamer-based Biochip Data by Potential SVM (Potential SVM을 이용한 압타머칩에서의 바이오마커 탐색)

  • Kim, Byoung-Hee;Kim, Sung-Chun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.22-27
    • /
    • 2006
  • 압타머칩은 혈청(serum) 내의 지정된 단백질의 상대적 양을 직접 측정할 수 있는 바이오칩으로서, 의학적 질병 진단에 유용하게 사용할 수 있는 툴이다. 압타머칩 데이터 분석에는 기존의 마이크로어레이 분석기법을 그대로 적용할 수 있다. 본 논문에서는 Potential SVM(PSVM)을 이용하여, 심혈관질환 샘플 기반의 압타머칩 데이터에서 바이오마커 후보 단백질을 선정한 결과를 정리한다. PSVM은 분류 알고리즘으로서 뿐만 아니라 자질 선택(feature selection)에서도 우수한 성능을 보이는 알고리즘으로 알려져 있다. 심혈관 질환의 단계에 따라 구분한 4개 클래스, 135개 샘플로 구성된 3K 압타머칩 데이터에 대해 PSVM을 적용하여 자질을 선택하고 분류성능을 측정한 결과, 마이크로어레이에서의 자질 선택에 많이 사용되는 Gain Ratio 기법과 비교하여 보다 적은 수의 단백질 정보로 보다 나은 분류 성능을 보임을 확인하였다. 더불어, PSVM을 이용해 선택한 단백질군을 심혈관 질환 진단을 위한 바이오마커 후보로 제시한다.

  • PDF

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk;Huh, Yong-Min;Kim, So-Youn;Lee, Dong-ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1827-1831
    • /
    • 2009
  • Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.