Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2272

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells  

Kong, Hoon Young (Department of Molecular Biology, Dankook University)
Byun, Jonghoe (Department of Molecular Biology, Dankook University)
Abstract
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.
Keywords
biomarker; prostate cancer; prostatic acid phosphatase; RNA aptamer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hassan, M.I., Aijaz, A., and Ahmad, F. (2010). Structural and functional analysis of human prostatic acid phosphatase. Expert Rev. Anticancer Ther. 10, 1055-1068.   DOI   ScienceOn
2 Hong, H., Goel, S., Zhang, Y., and Cai, W. (2011). Molecular imaging with nucleic acid aptamers. Curr. Med. Chem. 18, 4195-4205.   DOI
3 Jayasena, S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45, 1628-1650.
4 Kawakami, J., Imanaka, H., Yokota, Y., and Sugimoto, N. (2000). In vitro selection of aptamers that act with $Zn^{2+}$. J. Inorg. Biochem. 82, 197-206.   DOI   ScienceOn
5 Kong, H.Y., and Byun, J. (2013). Emerging roles of human prostatic acid phosphatase. Biomol. Ther. 21, 10-20.   DOI   ScienceOn
6 Lin, M.F., Meng, T.C., Rao, P.S., Chang, C., Schonthal, A.H., and Lin, F.F. (1998). Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J. Biol. Chem. 273, 5939-5947.   DOI   ScienceOn
7 Lin, M.F., Lee, M.S., Zhou, X.W., Andressen, J.C., Meng, T.C., Johansson, S.L., West, W.W., Taylor, R.J., Anderson, J.R., and Lin, F.F. (2001). Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol. 166, 1943-1950.   DOI   ScienceOn
8 Liu, Z., Duan, J.H., Song, Y.M., Ma, J., Wang, F.D., Lu, X., and Yang, X.D. (2012). Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med. 10:148.   DOI
9 Lubaroff, D.M. (2012). Prostate cancer vaccines in clinical trials. Expert Rev. Vaccines 11, 857-868.   DOI   ScienceOn
10 Madu, C.O., and Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. J. Cancer 1, 150-177.
11 McNeel, D.G., Dunphy, E.J., Davies, J.G., Frye, T.P., Johnson, L.E., Staab, M.J., Horvath, D.L., Straus, J., Alberti, D., Marnocha, R., et al. (2009). Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27, 4047-4054.   DOI   ScienceOn
12 Meng, L., Yang, L., Zhao, X., Zhang, L., Zhu, H., Liu, C., and Tan, W. (2012). Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7, e33434.   DOI
13 Mosing, R.K., Mendonsa, S.D., and Bowser, M.T. (2005). Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77, 6107-6112.   DOI   ScienceOn
14 Oesterling, J.E., Suman, V.J., Zincke, H., and Bostwick, D.G. (1993). PSA-detected (clinical stage T1c or B0) prostate cancer. Pathologically significant tumors. Urol. Clin. North Am. 20, 687-693.
15 Ray, P., and White, R.R. (2010). Aptamers for targeted drug delivery. Pharmaceuticals 3, 1761-1778.   DOI
16 Reiter, R.J., Tan, D.X., Manchester, L.C., Korkmaz, A., Fuentes- Broto, L., Hardman, W.E., Rosales-Corral, S.A., and Qi, W. (2013). A walnut-enriched diet reduces the growth of LNCaP human prostate cancer xenografts in nude mice. Cancer Invest. 31, 365-373.   DOI   ScienceOn
17 Rockey, W.M., Huang, L., Kloepping, K.C., Baumhover, N.J., Giangrande, P.H., and Schultz, M.K. (2011). Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper- 64 for targeted molecular imaging. Bioorg. Med. Chem. 19, 4080-4090.   DOI   ScienceOn
18 Sims, R.B. (2012). Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine 30, 4394-4397.   DOI   ScienceOn
19 Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L., and Janjic, N. (1998). 2'- Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556-20567.   DOI   ScienceOn
20 Savla, R., Taratula, O., Garbuzenko, O., and Minko, T. (2011). Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control. Release 153, 16-22.   DOI   ScienceOn
21 Soares, N.D., Teodoro, A.J., Oliveira, F.L., Santos, C.A., Takiya, C.M., Junior, O.S., Bianco, M., Junior, A.P., Nasciutti, L.E., Ferreira, L.B., et al. (2013). Influence of lycopene on cell viability, cell cycle, and apoptosis of human prostate cancer and benign hyperplastic cells. Nutr. Cancer 65, 1076-1085.   DOI   ScienceOn
22 Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W., and Yang, C.J. (2013). Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 85, 4141-4149.   DOI   ScienceOn
23 Subramanian, N., Raghunathan, V., Kanwar, J.R., Kanwar, R.K., Elchuri, S.V., Khetan, V., and Krishnakumar, S. (2012). Targetspecific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer. Mol. Vis. 18, 2783-2795.
24 Taira, A., Merrick, G., Wallner, K., and Dattoli, M. (2007). Reviving the acid phosphatase test for prostate cancer. Oncology 21, 1003-1010.
25 Cary, K.C., and Cooperberg, M.R. (2013). Biomarkers in prostate cancer surveillance and screening : past, present, and future. Ther. Adv. Urol. 5, 318-329.   DOI   ScienceOn
26 Azumi, N., Traweek, S.T., and Battifora, H. (1991). Prostatic acid phosphatase in carcinoid tumors. Immunohistochemical and immunoblot studies. Am. J. Surg. Pathol. 15, 785-790.   DOI
27 Bompiani, K.M., Woodruff, R.S., Becker, R.C., Nimjee, S.M., and Sullenger, BA. (2012). Antidote control of aptamer therapeutics: the road to a safer class of drug agents. Curr. Pharm. Biotechnol. 13, 1924-1934.   DOI
28 Bruno, J.G., Carrillo, M.P., Phillips, T., Vail, N.K., and Hanson, D. (2008). Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite. J. Fluoresc. 18, 867-876.   DOI
29 Chen, F., Hu, Y., Li, D., Chen, H., and Zhang, X.L. (2009) CSSELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One 4, e8142.   DOI   ScienceOn
30 Chuang, T.D., Chen, S.J., Lin, F.F., Veeramani, S., Kumar, S., Batra, S.K., Tu, Y., and Lin, M.F. (2010). Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J. Biol. Chem. 285, 23598-23606.   DOI   ScienceOn
31 Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822.   DOI   ScienceOn
32 Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510.   DOI
33 Talbot, L.J., Mi, Z., Bhattacharya, S.D., Kim, V., Guo, H., and Kuo, P.C. (2011). Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo efficacy in reversing growth of human breast cancer cells. Surgery 150, 224-230.   DOI   ScienceOn
34 Tang, Z., Parekh, P., Turner, P., Moyer, R.W., and Tan, W. (2009). Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55, 813-822.   DOI   ScienceOn
35 Thompson, I.M., Pauler, D.K., Goodman, P.J., Tangen, C.M., Lucia, M.S., Parnes, H.L., Minasian, L.M., Ford, L.G., Lippman, S.M., Crawford, E.D., et al. (2004). Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239-2246.   DOI   ScienceOn
36 Wallace, D.M., Chisholm, G.D., and Hendry, W.F. (1975). T.N.M. classification for urological tumours (U.I.C.C.) - 1974. Br. J. Urol. 47, 1-12.   DOI   ScienceOn
37 Walter, L.C., Bertenthal, D., Lindquist, K., and Konety, B.R. (2006). PSA screening among elderly men with limited life expectancies. JAMA 296, 2336-2342.   DOI   ScienceOn
38 Wang, Y., Harada, M., Yano, H., Ogasawara, S., Takedatsu, H., Arima, Y., Matsueda, S., Yamada, A., and Itoh, K. (2005). Prostatic acid phosphatase as a target molecule in specific immunotherapy for patients with nonprostate adenocarcinoma. J. Immunother. 28, 535-541.   DOI
39 Whitesel, J.A., Donohue, R.E., Mani, J.H., Mohr, S., Scanavino, D.J., Augspurger, R.R., Biber, R.J., Fauver, H.E., Wettlaufer, J.N., and Pfister, R.R. (1984). Acid phosphatase: its influence on the management of carcinoma of the prostate. J. Urol. 131, 70-72.   DOI
40 Eyetech Study Group. (2002). Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22, 143-152.   DOI
41 Fang, L.C., Dattoli, M., Taira, A., True, L., Sorace, R., and Wallner, K. (2008) Prostatic acid phosphatase adversely affects causespecific survival in patients with intermediate to high-risk prostate cancer treated with brachytherapy. Urology 71, 146-150.   DOI   ScienceOn
42 Foy, J.W., Rittenhouse, K., Modi, M., and Patel, M. (2007). Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23, 452-466.   DOI   ScienceOn
43 Gerritsen, W.R. (2012). The evolving role of immunotherapy in prostate cancer. Ann. Oncol. 23, Suppl 8:viii22-27.   DOI   ScienceOn
44 Gopinath, S.C. (2007). Methods developed for SELEX. Analytical and bioanalytical chemistry 387, 171-182.
45 Greene, K.L., Albertsen, P.C., Babaian, R.J., Carter, H.B., Gann, P.H., Han, M., Kuban, D.A., Sartor, A.O., Stanford, J.L., Zietman, A., et al. (2013). Prostate specific antigen best practice statement: 2009 update. J. Urol. 189 (1 Suppl), S2-S11.   DOI   ScienceOn
46 Gunia, S., Koch, S., May, M., Dietel, M., and Erbersdobler, A. (2009). Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies. Virchows. Arch. 454, 573-579.   DOI
47 Hamula, C.L., Le, X.C., and Li, X.F. (2011). DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal. Chem. 83, 3640-3647.   DOI   ScienceOn
48 Zhu, G., Ye, M., Donovan, M.J., Song, E., Zhao, Z., and Tan, W. (2012). Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. 48, 10472-10480.   DOI   ScienceOn
49 Zhang, Y., Hong, H., and Cai, W. (2011). Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 18, 4185-4194.   DOI   ScienceOn
50 Zhang, M.Z., Yu, R.N., Chen, J., Ma, Z.Y., and Zhao, Y.D. (2012). Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23, 485104.   DOI   ScienceOn
51 Zimmermann, H. (2009). Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal 5, 273-275.   DOI
52 Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.   DOI   ScienceOn