• Title/Summary/Keyword: approximation with constraints

Search Result 92, Processing Time 0.026 seconds

Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints (이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법)

  • Kwon, Yong-Sam;Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.

A New Technique for Solving Optimal Control Problems of the Time-delayed Systems

  • Ghomanjani, Fateme
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.333-346
    • /
    • 2018
  • An approximation scheme utilizing Bezier curves is considered for solving time-delayed optimal control problems with terminal inequality constraints. First, the problem is transformed, using a $P{\acute{a}}de$ approximation, to one without a time-delayed argument. Terminal inequality constraints, if they exist, are converted to equality constraints. A computational method based on Bezier curves in the time domain is then proposed for solving the obtained non-delay optimal control problem. Numerical examples are introduced to verify the efficiency and accuracy of the proposed technique. The findings demonstrate that the proposed method is accurate and easy to implement.

An Optimality Criteria applied to The Plane Frames (평면 뼈대 구조물에 적용된 최적규준)

  • 정영식;김창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.17-24
    • /
    • 1995
  • This work proposes an optimality criteria applicable to the optimum design of plane frames. Stress constraints as well as displacement constraints are treated as behavioural constraints and thus the first order approximation of stress constraints is adopted. The design space of practical reinforced concrete frames with discrete design variables has been found to have many local minima, and thus it is desirable to find in advance the mathematical minimum, hopefully global, prior to starting to search a practical optimum design. By using the mathematical minimum as a trial design of any search algorithm, we may not full into a local minimum but apparently costly design. Therefore this work aims at establishing a mathematically rigorous method ⑴ by adopting first-order approximation of constraints, ⑵ by reducing the design space whenever minimum size restrictions become "active" and ⑶ by the of Newton-Raphson Method.

  • PDF

A NOTE ON GREEDY ALGORITHM

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.293-302
    • /
    • 2001
  • We improve the greedy algorithm which is one of the general convergence criterion for certain iterative sequence in a given space by building a constructive greedy algorithm on a normed linear space using an arithmetic average of elements. We also show the degree of approximation order is still $Ο(1\sqrt{\n}$) by a bounded linear functional defined on a bounded subset of a normed linear space which offers a good approximation method for neural networks.

  • PDF

An Overview of Optimization of Structures Subjected to Transient Loads (동하중을 받는 구조물의 최적화에 관한 연구동향)

  • Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.369-386
    • /
    • 2005
  • Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

Opportunistic Scheduling with QoS Constraints for Multiclass Services HSUPA System

  • Liao, Dan;Li, Lemin
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.201-211
    • /
    • 2007
  • This paper focuses on the scheduling problem with the objective of maximizing system throughput, while guaranteeing long-term quality of service (QoS) constraints for non-realtime data users and short-term QoS constraints for realtime multimedia users in multiclass service high-speed uplink packet access (HSUPA) systems. After studying the feasible rate region for multiclass service HSUPA systems, we formulate this scheduling problem and propose a multi-constraints HSUPA opportunistic scheduling (MHOS) algorithm to solve this problem. The MHOS algorithm selects the optimal subset of users for transmission at each time slot to maximize system throughput, while guaranteeing the different constraints. The selection is made according to channel condition, feasible rate region, and user weights, which are adjusted by stochastic approximation algorithms to guarantee the different QoS constraints at different time scales. Simulation results show that the proposed MHOS algorithm guarantees QoS constraints, and achieves high system throughput.

  • PDF

A Feasibility Study on Bayesian Inference of Parameters of Weibull Distributions of Failures for Two Non-identical Components in Series System by using Discrete Time Approximation Method (이산 시간 접근 방법을 사용하는 2 개의 직렬계 비동일 부품 고장의 와이블 분포 모수의 베이시안 추정에 대한 타당성 조사)

  • Chung, In-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1144-1150
    • /
    • 2009
  • This paper investigates the feasibility of the Bayesian discrete time approximation method to estimate the parameters of Weibull distributions of failures for two non-identical components connected in series system. A Bayesian model based on the discrete time approximation method is formulated to infer the Weibull parameters of two non-identical components with the failure data of the virtual tests. The study of this paper comes to a conclusion that the method is feasible only for some special cases under the given constraints on the concerned parameters.

An Approximation Method for Configuration Optimization of Structures (구조물 형상최적화를 위한 근사해석법에 관한 연구)

  • Jang, Dong Jin;Hoon, Sang Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.7-17
    • /
    • 1990
  • The objective of this paper is to provide a method of optimizing are as of the members as well as shape of both truss and arch structures. The design process includes satisfaction of stress and Euler buckling stress constraints for truss and combined stress constraints for arch structures. In order to reduce the number of detailed finite element analysis, the Force Approximation Method is used. A finite element analysis of the initial structure is performed and the gradients of the member end forces are calculated with respect to the areas and nodal coordinates. The gradients are used to form an approximate structural analysis based on first order Taylor series expansions of the member end forces. Using move limits, a numerical optimizer minimizes the volume of the structure with information from the approximate structural analysis. Numerical examples are performed and compared with other methods to demonstrate the efficiency and reliability of the Force Approximation Method for shape optimization. It is shown that the number of finite element analysis is greatly reduced and that it leads to a highly efficient method of shape optimization of structures.

  • PDF

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.

Minimum cost design of RCMRFs based on consistent approximation method

  • Habibi, Alireza;Shahryari, Mobin;Rostami, Hasan
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, a procedure for automated optimized design of reinforced concrete frames has been presented. The procedure consists of formulation and solution of the design problem in the form of an optimization problem. The minimization of total cost of R/C frame has been taken as the objective of optimization problem. In this research, consistent approximation method is applied to explicitly formulate constraints and objective function in terms of the design variables. In the presented method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the Sequential Quadratic Programming (SQP) method. The proposed method is demonstrated through a four-story frame and an eight-story frame, and the optimum results are compared with those in the available literature. It is shown that the proposed method can be easily applied to obtain rational, reliable, economical and practical designs for Reinforced Concrete Moment Resisting Frames (RCMRFs) while it is converged after a few analyses.