• Title/Summary/Keyword: applications

Search Result 40,456, Processing Time 0.06 seconds

Distribution and Frequency of SSR Motifs in the Chrysanthemum SSR-enriched Library through 454 Pyrosequencing Technology (국화 SSR-enriched library에서 SSR 반복염기의 분포 및 빈도)

  • Moe, Kyaw Thu;Ra, Sang-Bog;Lee, Gi-An;Lee, Myung-Chul;Park, Ha-Seung;Kim, Dong-Chan;Lee, Cheol-Hwi;Choi, Hyun-Gu;Jeon, Nak-Beom;Choi, Byung-Jun;Jung, Ji-Youn;Lee, Kyu-Min;Park, Yong-Jin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.546-551
    • /
    • 2011
  • Chrysanthemums, often called mums or chrysanths, belong to the genus Chrysanthemum, which includes about 30 species of perennial flowering plants in the family Asteraceae. We extracted DNA from Dendranthema grandiflorum ('Smileball') to construct a simple sequence repeat (SSR)-enriched library, using a modified biotin-streptavidin capture method. GS FLX (Genome Sequencer FLX System which provides the flexibility to perform the broad range of applications) sequencing (at the 1/8 run specification) resulted in 18.83 mega base pairs (Mbp) with an average read length of 280.06 bp. Sequence analyses of all SSR-containing clones revealed a predominance of di-nucleotide motifs (16,375, 61.5%) followed by tri-nucleotide motifs (6,616, 24.8%), tetra-nucleotide motifs (1,674, 6.3%), penta-nucleotide motifs (1,283, 4.8%), and hexa-nucleotide motifs (693, 2.6%). Among the di-nucleotide motifs, the AC/CA class was the most frequently identified (93.5% of all di-nucleotide types), followed by the GA/AG class (6.1%), the AT/TA class (0.4%), and the CG/GC class (0.03%). When we analyzed the distribution of different repeat motifs and their respective numbers of repeats, regardless of the motif class, of 100 SSR markers, we found a higher number of di-nucleotide motifs with 70 to 80 repeats; we also found two di-nucleotide motifs with 83 and 89 repeats, respectively, but their product lengths were within optimum size (297 and 300 bp). In future work, we will screen for polymorphisms of possible primer pairs. The results will provide a useful tool for assessing molecular diversity and investigating the population structure among and within Chrysanthemum species.

Research on Factors Affecting Smartphone App Market Selection: App Market Platform Provider's Perspective (스마트폰 앱 마켓 선택에 영향을 미치는 요인에 관한 연구: 앱 마켓 플랫폼 사업자 관점으로)

  • Lee, Ho;Kim, Jae Sung;Kim, Kyung Kyu;Lee, Youngin
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2018
  • This paper empirically investigates the factors that influence the consumer choice of an app market based on the rational choice theory. The app market is the only channel where a consumer can buy smartphone apps, which give various functional convenience and are considered to be a major contributor to the proliferation of smartphones. Analyses of 281 questionnaires show that usability and structural guarantees as benefit factors significantly influence the app market choice. From the cost perspectives, both monetary and non-monetary conversion costs are found to significantly influence the app market choice. On the other hand, customer trust, information quality, and market image were found to have no significant effect on app market selection. In particular, Korean app market platform providers (KT, LG U +) seem to be superior in terms of structural guarantees, such as customer center operation and damage compensation regulations, compared to overseas app market platform operators (Google). However, in the case of the Google App Market, it is pre-installed on all Android phones, so it is not inconvenient to install additional apps to use other app market. This is disadvantageous to domestic app market platform operators, and it is necessary to establish a policy solution point. In terms of operator costs, both monetary and non-monetary conversion costs have a significant impact on app market choice. In particular, non-monetary conversion costs have a negative impact on Korean app market platform operators. It can be explained that the service expectation level of the domestic app market is low and it is recognized that the time cost factor such as membership is large for new users to use. It seems to be necessary to improve the domestic app market business. Meanwhile, extant research on smartphone apps focuses on the purchase of apps themselves, but not on the selection of the app market itself. In order to fill in this gap, this study focuses on the determinants of app market selection, including the characteristics of an app market and the switching costs.

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

A Study on the Countermeasures Taken By the Korean Healthcare and Life Sciences Industry Regarding U.S. Import Refusals: Focus on the Analysis of FDA Violation Codes (한국 바이오헬스 산업의 미국 수입거부 대응 방안 연구 : FDA 위반코드 분석을 중심으로)

  • Yu-Han Lee;Hag-Min Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.131-150
    • /
    • 2023
  • The purpose of this study was to find a countermeasure to the U.S. import refusals for the Korean healthcare and life sciences industry. To this end, an analysis of trends during the pandemic was conducted using the KITA Border Rejection Database, which includes information on items and types of import refusals. The reason for rejection was also analyzed according to the FDA violation codes. The degree of countermeasure for import refusals was identified by measuring the unit rejection rate (URR). The results of the analysis showed that the major U.S. import refusals for the Korean healthcare and life sciences industry had expanded from contact lenses to COVID-19 diagnostic kits and drugs after the pandemic broke out. The major reasons for import refusals were non-compliance with the Predicate Device and Drugs Act and non-approval by the FDA for products and facilities. On the other hand, the unit rejection rate (URR) of major items in the Korean healthcare and life sciences industry was measured higher than the industry average. The results therefore showed a low level of response to U.S. import refusals. The results of the analysis of reasons for import refusals by item according to FDA violation codes were as follows. First of all, the main violation for contact lenses and COVID-19 diagnostic kits corresponded to misbranding. This was often due to the fact that Korean companies did not provide the relevant notices and information required by the FDA. Many cases also failed to demonstrate a substantial equivalency compared to predicate devices already on the market. On the other hand, applications for new unapproved drugs were not accepted as they had yet to pass relevant regulations that would prove their safety and efficacy. In conclusion, import refusals for the Korean healthcare and life sciences industry were found to be closely related to technical barriers to trade (TBT).

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images (광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교)

  • Jeong Eun;Sun-Hwa Kim;Jee-Eun Min
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1321-1330
    • /
    • 2023
  • Normalized Difference Vegetation Index (NDVI) is the most widely used remote sensing data in the agricultural field and is currently provided by most optical satellites. In particular, as high-resolution optical satellite images become available, the selection of optimal optical satellite images according to agricultural applications has become a very important issue. In this study, we aim to define the most optimal optical satellite image when monitoring NDVI in rice fields in Korea and derive the resolution-related requirements necessary for this. For this purpose, we compared and analyzed the spatial distribution and time series patterns of the Dangjin rice paddy in Korea from 2019 to 2022 using NDVI images from MOD13, Landsat-8, Sentinel-2A/B, and PlanetScope satellites, which are widely used around the world. Each data is provided with a spatial resolution of 3 m to 250 m and various periods, and the area of the spectral band used to calculate NDVI also has slight differences. As a result of the analysis, Landsat-8 showed the lowest NDVI value and had very low spatial variation. In comparison, the MOD13 NDVI image showed similar spatial distribution and time series patterns as the PlanetScope data but was affected by the area surrounding the rice field due to low spatial resolution. Sentinel-2A/B showed relatively low NDVI values due to the wide near-infrared band area, and this feature was especially noticeable in the early stages of growth. PlanetScope's NDVI provides detailed spatial variation and stable time series patterns, but considering its high purchase price, it is considered to be more useful in small field areas than in spatially uniform rice paddy. Accordingly, for rice field areas, 250 m MOD13 NDVI or 10 m Sentinel-2A/B are considered to be the most efficient, but high-resolution satellite images can be used to estimate detailed physical quantities of individual crops.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.