• Title/Summary/Keyword: applicability domain

Search Result 219, Processing Time 0.024 seconds

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Enhanced reasoning with multilevel flow modeling based on time-to-detect and time-to-effect concepts

  • Kim, Seung Geun;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.553-561
    • /
    • 2018
  • To easily understand and systematically express the behaviors of the industrial systems, various system modeling techniques have been developed. Particularly, the importance of system modeling has been greatly emphasized in recent years since modern industrial systems have become larger and more complex. Multilevel flow modeling (MFM) is one of the qualitative modeling techniques, applied for the representation and reasoning of target system characteristics and phenomena. MFM can be applied to industrial systems without additional domain-specific assumptions or detailed knowledge, and qualitative reasoning regarding event causes and consequences can be conducted with high speed and fidelity. However, current MFM techniques have a limitation, i.e., the dynamic features of a target system are not considered because time-related concepts are not involved. The applicability of MFM has been restricted since time-related information is essential for the modeling of dynamic systems. Specifically, the results from the reasoning processes include relatively less information because they did not utilize time-related data. In this article, the concepts of time-to-detect and time-to-effect were adopted from the system failure model to incorporate time-related issues into MFM, and a methodology for enhancing MFM-based reasoning with time-series data was suggested.

Functional Data Classification of Variable Stars

  • Park, Minjeong;Kim, Donghoh;Cho, Sinsup;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.271-281
    • /
    • 2013
  • This paper considers a problem of classification of variable stars based on functional data analysis. For a better understanding of galaxy structure and stellar evolution, various approaches for classification of variable stars have been studied. Several features that explain the characteristics of variable stars (such as color index, amplitude, period, and Fourier coefficients) were usually used to classify variable stars. Excluding other factors but focusing only on the curve shapes of variable stars, Deb and Singh (2009) proposed a classification procedure using multivariate principal component analysis. However, this approach is limited to accommodate some features of the light curve data that are unequally spaced in the phase domain and have some functional properties. In this paper, we propose a light curve estimation method that is suitable for functional data analysis, and provide a classification procedure for variable stars that combined the features of a light curve with existing functional data analysis methods. To evaluate its practical applicability, we apply the proposed classification procedure to the data sets of variable stars from the project STellar Astrophysics and Research on Exoplanets (STARE).

NUMERICAL SOLUTION OF LAMINAR FLOW OVER SQUARE CYLINDER IN A CHANNEL AND EVALUATION OF LBM SIMULATION RESULTS (사각 실린더 주위의 2차원 층류 유동해석과 LBM 해석 결과의 평가)

  • Kim H.M.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • To evaluate LBM we performed the simulation of the unsteady two dimensional flow over a square cylinder in a channel in moderate Reynolds number range, $100\~500$ by using LBM and Fractional-Step method. Frist of all we compared LBM solution of Poiseuille flow applied Farout and periodic boundary conditions with the analytical solution to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured 500x100 grids. Prescribed maximum velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback boundary condition was applied to the channel and the cylinder waifs. The flow patterns and vortex shedding strouhal numbers were compared with previous research results. The flow patterns by LBM were in agreement with the flow pattern by fractional step method. Furthermore the strouhal number computed by LBM simulation result was more accurate than that of fractional step method through the comparison of the previous research results.

Scattering of Oblique Waves by an Inanite Flexible Membrane Breakwater (유연막 방파제에 의한 경사파의 산란)

  • 조일형;홍석원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1995
  • The wave interaction with flexible membrane such as PVC and PU fabrics is studied to prove its applicability to portable breakwaters. To analyze the wave deformation due to the flexible membrane. eigen-function expansion method is employed. The fluid domain is seperated into two regions. The velocity potential in each regions and the deformation of membrane are coupled by the body boundary conditions. Herein the deformation of membrane is obtained by solving the membrane equation. As a numerical example, transmission and reflection coefficients according to the change of several design parameters such as tensile force. mooring line stiffness and membrane height are investigated. It is found that the efficiency of flexible membrane breakwater is significantly affected by these design parameters. The angle of incident wave is an important role to the performance of breakwater. Finally we conclude that flexible membrane can be used to engineering material for the future breakwaters.

  • PDF

Alternatives to In Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-Like Epithelium and Epidermis Models

  • Lee, Miri;Hwang, Jee-Hyun;Lim, Kyung-Min
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.191-203
    • /
    • 2017
  • Human eyes and skin are frequently exposed to chemicals accidentally or on purpose due to their external location. Therefore, chemicals are required to undergo the evaluation of the ocular and dermal irritancy for their safe handling and use before release into the market. Draize rabbit eye and skin irritation test developed in 1944, has been a gold standard test which was enlisted as OECD TG 404 and OECD TG 405 but it has been criticized with respect to animal welfare due to invasive and cruel procedure. To replace it, diverse alternatives have been developed: (i) For Draize eye irritation test, organotypic assay, in vitro cytotoxicity-based method, in chemico tests, in silico prediction model, and 3D reconstructed human cornealike epithelium (RhCE); (ii) For Draize skin irritation test, in vitro cytotoxicity-based cell model, and 3D reconstructed human epidermis models (RhE). Of these, RhCE and RhE models are getting spotlight as a promising alternative with a wide applicability domain covering cosmetics and personal care products. In this review, we overviewed the current alternatives to Draize test with a focus on 3D human epithelium models to provide an insight into advancing and widening their utility.

Analysis of Soil Moisture Recession Characteristics in Conifer Forest (침엽수 산림에서의 토양수분 감쇄특성 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Forest area covers 64 % of the national land of Korea and the forest plays a pivotal role in the hydrological process such as flood, drought, runoff, infiltration, evapotranspiration, etc. In this study, soil moisture monitoring for conifer forest in experimental forest of Seoul National University has been conducted using FDR (Frequency Domain Reflection) for 6 different soil layers, 10, 20, 30, 60, 90 and 120 cm during 2009~2010, and precipitation data was collected from nearby AWS (Automatic Weather Station). Soil moisture monitoring data were used to estimate soil moisture recession constant (SMRC) for analyzing soil moisture recession characteristics. From the results, empirical soil moisture recession equations were estimated and validated to determine the feasibility of the result, and soil moisture contents of measured and calculated showed a similar tendency from April to November. Thus, the results can be applied for soil moisture estimation and provided the basic knowledge in forest soil moisture consumption. Nevertheless, this approach demonstrated applicability limitations during winter and early spring season due to freezing and melting of snow and ice causing peculiar change of soil moisture contents.

3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System (케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

Stationary and nonstationary analysis on the wind characteristics of a tropical storm

  • Tao, Tianyou;Wang, Hao;Li, Aiqun
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1067-1085
    • /
    • 2016
  • Nonstationary features existing in tropical storms have been frequently captured in recent field measurements, and the applicability of the stationary theory to the analysis of wind characteristics needs to be discussed. In this study, a tropical storm called Nakri measured at Taizhou Bridge site based on structural health monitoring (SHM) system in 2014 is analyzed to give a comparison of the stationary and nonstationary characteristics. The stationarity of the wind records in the view of mean and variance is first evaluated with the run test method. Then the wind data are respectively analyzed with the traditional stationary model and the wavelet-based nonstationary model. The obtained wind characteristics such as the mean wind velocity, turbulence intensity, turbulence integral scale and power spectral density (PSD) are compared accordingly. Also, the stationary and nonstationary PSDs are fitted to present the turbulence energy distribution in frequency domain, among which a modulating function is included in the nonstationary PSD to revise the non-monotonicity. The modulated nonstationary PSD can be utilized to unconditionally simulate the turbulence presented by the nonstationary wind model. The results of this study recommend a transition from stationarity to nonstationarity in the analysis of wind characteristics, and further in the accurate prediction of wind-induced vibrations for engineering structures.