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Abstract

This paper considers a problem of classification of variable stars based on functional data analysis. For a
better understanding of galaxy structure and stellar evolution, various approaches for classification of variable
stars have been studied. Several features that explain the characteristics of variable stars (such as color index,
amplitude, period, and Fourier coefficients) were usually used to classify variable stars. Excluding other factors
but focusing only on the curve shapes of variable stars, Deb and Singh (2009) proposed a classification procedure
using multivariate principal component analysis. However, this approach is limited to accommodate some fea-
tures of the light curve data that are unequally spaced in the phase domain and have some functional properties.
In this paper, we propose a light curve estimation method that is suitable for functional data analysis, and provide
a classification procedure for variable stars that combined the features of a light curve with existing functional
data analysis methods. To evaluate its practical applicability, we apply the proposed classification procedure to
the data sets of variable stars from the project STellar Astrophysics and Research on Exoplanets (STARE).
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1. Introduction

Any star whose brightness fluctuates is called a variable star. The fluctuation of brightness, which is
caused by actual luminosity changes or something that partly blocks light can be regular or irregular
according to some reason. Intrinsic and extrinsic variables are two big categories for variable stars.
Intrinsic variables whose luminosity actually changes include Cepheid, pulsating, cataclysmic and
erupted variables. Eclipsing binary and rotating variables are categorized as extrinsic variables whose
brightness changes come from variations in the amount of light that reaches Earth.

Studies on variable stars have been conducted to obtain information on the structure and compo-
sition of the star along with properties such as mass, radius, temperature and luminosity. Moreover,
variable stars provide an important clue to understand the Sun, the age of the universe, distant galaxies,
and an expanding universe.

Among the several issues related to variable stars studies, in this paper, we consider how to ef-
ficiently classify variable stars. We propose a light curve estimation method that is appropriate for
the functional data analysis (FDA), and provide a effective classification method by coupling of the
proposed the light curve estimation method and existing FDA methods. We focus on only the light
curve shape among various characteristics in order to classify variable stars, which share the same
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Figure 1: Period estimation and light curves

motivation of Deb and Singh (2009). We employ FDA in order to treat the light curve shapes prop-
erly. Since the light curve data are unequally spaced on the phase domain and have some functional
properties, FDA methodology could be more appropriate than multivariate data analysis used in many
existing classification methods that include Deb and Singh (2009) that are briefly reviewed in Section
2. Key features that distinguish the proposed method from most existing classification methods of
variable stars are: (1) the proposed method focuses on light curve shape rather than the characteristics
of the light curve and (2) we employ FDA instead of multivariate data analysis, which is capable of
representing light curve data efficiently. An objective method to classify variable stars efficiently in
massive surveys might be useful to identify new types of variable stars and detect unusual objects.

The rest of this paper is organized as follows. Section 2 reviews the literature of period estimation
and classical classification of variable stars. We also review functional data analysis for the proposed
classification method. Section 3 proposes a classification procedure based on FDA. Section 4 presents
a description of the data used in this study and the classification results. Finally, Section 5 addresses
the concluding remarks.

2. Background: Period Estimation, Classification Method, and Functional Data
Analysis

2.1. Period estimation for variable stars

Brightness time series are obtained in the physical time domain as shown on panel (a) in Figure 1.
Light curves in the phase domain like one on panel (b) can be obtained through a period estimation.
Since the classification procedure is based on the light curves, estimating period is an important issue
before classifying variable stars. Therefore, we additionally review how to estimate periods of variable
stars and its importance.

Suppose that a time series {(#;, x;)} with a single period p is observed from the model

1

xi:f(_)ﬁi, I @.1)
p

where x;, and ¢; are the brightness measurement and measurement error, respectively, at the i™" sam-
pling time, #;. The f denotes a periodic function on [0, 1]. We extend the phase domain by half to
both sides for a visually better representation of a light curve. The extension also alleviates boundary
problems in analyzing light curves.

To obtain a light curve, we fold the brightness time series with a period p and obtain the light
curve in the phase domain. Note that the brightness in the physical time domain is unequally obtained
since stars can be observed only at certain times of day. The light curve data in the phase domain are
also measured at unpredicted locations by folding and therefore are unequally spaced.
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Figure 1 shows in panel (a), that the observations are unequally spaced with very long interruptions
and that it is not easy to find the periodicity of the star in the time domain. By folding data over the
period p = 0.87642 (days) of variability, we can obtain the light curve in panel (b). However, the
light curve induced by an incorrect period produces a blurred pattern of brightness as shown in panel
(c), which does not provide useful information for identifying the star. Thus, period estimation is an
important issue for variable star studies.

Based on the periodogram, simple cosine models were considered in Deeming (1975), Lomb
(1976), and Scargle (1982), respectively. However, in Lafler and Kinman (1965), Stellingwerf (1978)
and Dwortesky (1983), respectively, some measures of dispersion in the light curve were used to find
the period. Nonparametrically, based on cubic B-splines, Akerlof et al. (1994) suggested a method
fitting period-folded light curves with examples in the MAssive Compact Halo Objects (MACHO)
dataset. As another nonparametric method, Reimann (1994) fitted the brightness as a function of phase
at a given period using the SuperSmoother of Friedman (1984) and obtained four final candidates of
period. In Hall e al. (2000), a local linear smoother was suggested to estimate both the period and
amplitude function. Finally, Oh et al. (2004) proposed a robust method to estimate periods and light
curves, which is less sensitive to the outliers.

2.2. Previous classification methods for variable stars

Most previous studies extracted some characteristics of the light curve for the input variables of clas-
sification, and adapted classification methods such as a Bayesian classifier, support vector machine
(SVM), and discriminant analysis. Hegland et al. (2001) studied the classification of variable stars in
the MACHO dataset and developed software for astronomers. They employed various characteristics
such as color index, amplitude, average of magnitude, difference and correlation between red and
blue magnitude, average of frequencies, and average frequency spread. They suggested an algorithm
to find variable stars with extreme values using a Bayesian classifier, k-means clustering, and boxing
algorithm that allows astronomers to decide if each of the light curves belongs to a specific class or
not. However, it does not provide a fully automatic procedure for classification.

Wozniak et al. (2004) and Usatov and Nosulchik (2008) selected five characteristics that include
period, amplitude, and several independent color indexes; subsequently, they employed SVM method
to classify the slowly varying stars in Northern Sky Variability Survey database. Willemsen and Eyer
(2005) also used a SVM-based classification method with 51 characteristics such as skewness, the
median subtracted 10-percentiles, and forty bins from the Fourier envelope of light curve.

Debosscher et al. (2008) used Fourier coeflicients as characteristics and then developed a multi-
stage tree procedure to combine Gaussian mixture classifier and SVM. Some real data analysis fol-
lowing their procedure was performed in Sarro et al. (2009) and Blomme et al. (2010). Most existing
classification methods of variable stars focus on extracting some characteristics that can be appropri-
ately used as input variables of multivariate data analysis.

Conversely, Deb and Singh (2009) utilized the light curve shape to classify variable stars. Deb and
Singh (2009) conducted a comparison study for the classification results between the characteristics of
the light curve and the light curve shape based on principal component analysis (PCA). They showed
that their approach would perform better. When finding some features representing light curve shapes,
PCA might be a natural approach as in Deb and Singh (2009). In their study, they selected 100 equally
spaced points in each light curve by an interpolation method in order to carry out PCA directly on the
light curve.
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2.3. Functional data analysis

While a set of given data is treated as n length of vector in multivariate data analysis, FDA deals with
the same data as a single function under the assumption that the data is a realization of a function.
From the theoretical viewpoint, FDA has several merits; dealing unequally spaced data and avoiding
high dimension problems (Ramsay and Silverman, 2005). In practice, data can be considered as
discretized functions rather than as standard vectors. In this study, we reasonably assume that each
variable star has its own light curve function, which means that each light curve is a set of functional
data. Hence, it is natural to employ the FDA approach for classification of the light curves. We briefly
review the basic idea of FDA. The full explanation of FDA can be found in Ramsay and Silverman
(2005).

Let y; be a realization of smooth function x at time #; with error €;. Then we have the following
model of observations

yi=x(tj)+e€, j=12,...,n,

and represent the underlying function x(¢) as an expansion of some basis functions ¢ = (¢1(?),...,

o)’

L
(1) = ) cepel) = ¢, 2.2)

=1
where ¢ = (¢y,...,c.)T. For estimating the underlying function, we consider a linear smoother

minimizing the following least squares criterion (Ramsay and Silverman, 2005)
Q(c) = (y - o)’ (y - Do),

where y = (y1,...,y.)” and ® is an n by L matrix containing ¢¢(tj) values. The estimator of the
coefficient vector ¢ is ¢ = (@7 ®)~'®”y provided that (®7 ®)~! exists, and the corresponding fitted
vector at each sampling point #; is X = Sy, where § = ®(®" ®)"'®”. In order to avoid too wiggle
approximation, a regularization method that minimizes the penalized least squares can be used. For
details, refer to Ramsay and Silverman (2005). Applications in different fields have been developed,
and several examples are found in Ramsay and Silverman (2002). The software for FDA are also
available (Clarkson et al., 2005; Ramsay et al., 2009).

3. Variable Star Classification Based on FDA
3.1. Functional data classification

For the efficient classification of functional data, we need to consider the classification method as
well as the functional features used as input variables for the classification method. The functional
features should effectively represent the shape of the light curve function for classification. Taking
the expansion of function into consideration as in Equation (2.2), the fitted function values X and the
estimator of the coefficient ¢ of some basis function for example Fourier basis, would be proper fea-
tures. However, PCA is extended to extracting important functional features from a set of functional
data since most multivariate data analysis can be generalized to a functional approach (Ramsay and
Silverman, 2005). Therefore, functional principal component (PC) scores could be natural candidates.
Once some functional features are obtained, we consider how to functionally classify light curves.
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Table 1: Functional classification methods. Note that NP density implies Bayesian classifier with
nonparametrically estimated density.

Input variables Classification method Reference
QDA Hall et al. (2001)
Functional PC scores NP density Ferraty and Vieu (2003)
FSVM Rossi and Villa (2006)
N o QDA Biau et al. (2005)
Coefficients of Fourier basis FSVM Rossi and Villa (2006)
. . NP density Ferraty and Vieu (2003)
Fitted function values FSVM Rossi and Villa (2006)

In Appendix, we intensively review which functional features can be used for classification meth-
ods in the FDA approaches with describing some details of Bayesian classifier, k-nearest neighbor
(k-NN) and support vector machine (SVM) aspects, respectively. We believe that this summarization
is useful for potential readers who are interested in functional data classification.

According to the combination of input variable and classification method, several functional clas-
sification methods have been recently proposed. Table 1 lists the methods used in this paper. Biau et
al. (2005) and Hall et al. (2001) proposed a classification procedure based on quadratic discriminant
analysis (QDA). They used the coefficients of Fourier basis and functional PC scores for the analysis,
respectively. Rossi and Villa (2006) introduced the functional support vector machine (FSVM). The
functional PC scores, the fitted function values, and coefficients of a basis system can be utilized for
FSVM (Rossi and Villa, 2006). Ferraty and Vieu (2003) proposed the Bayesian classification method.
Ferraty and Vieu (2003) adapted the nonparametric density estimation for f,. For this approach, the
fitted function values and functional PC scores can be used as input for classification.

3.2. The proposed functional data classification procedures for variable stars

Before classifying variable stars based on light curve shapes, the correct form of light curve must be
estimated. There are several challenges to deal with light curve data: (1) huge amount of data, (2)
large errors, (3) unequally spaced observations, and (4) existence of big gaps between observations
even in the phase domain. The original light curve time series are obtained on the physical time
domain. Light curves in the phase domain can be obtained by folding the time series with its period.
To better represent a light curve, we usually extend the phase domain by half to each left and right
side, respectively. The extension can alleviate boundary problems in analyzing light curves. Note that
the brightness on the physical time domain is unequally obtained since stars can be observed only
at certain times of day. The light curve data in the phase domain are also measured at unpredicted
locations by folding and are therefore unequally spaced. The light curve should be registered to be
suitable for FDA. Coping with several challenges and considering the aspects of FDA, we propose
the efficient light curve estimation procedure. The detailed preprocessing procedure for functional
classification is as follows:

1. Fold the given brightness time series by its period, and obtain an initial light curve on the phase
domain [0, 1].

2. Delete outliers using quantiles on a moving window from the light curve data.
3. Register the light curve data to be located from phase O (basic registration).

4. Standardize the curve by migrating minimum value to 0 and maximum value to 2.
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Extend the light curve on the phase domain [-0.5, 1.5].
Obtain the best fit by FDA with roughness penalty for each light curve data.

Refit the fitted light curves with a set of common basis functions.

® =N W

Perform landmark registration, so that each estimated light curve function has its minimum at
phase 0 and 1 (functional registration).

Here, we remark some details of the above steps.

Step 2 (Removing outliers): For a given phase ¢, consider a moving window B; = [t — 0.05, ¢ + 0.05]
with width 0.1. If an observation is outside of the 10% and 90% quantiles of the data on the
window B;, then we regard that observation as an outlier and delete it.

Step 6 (Obtaining the best fit): In this step, we estimate the light curve as a function. The quality
of the fit is closely related to the number of basis and the smoothing parameter. In this study,
we use 100 spline basis functions to capture all the variations in a light curve, and then provide a
roughness penalty to impose further smoothness on the resulting fit. Moreover, for fitting the shape
appropriately, we select knots from the quantiles of phase, which can select the basis functions
data-adaptively. In this manner, we obtain the best fit for each light curve.

Step 7 (Refitting): For the use of functional classification methods and landmark registration in Step
8, it is required to use the same basis functions for all light curves in Step 7. Therefore we refit the
independently estimated curves with a set of common basis functions, whose knots are equally
spaced.

Figure 2 shows an example for the preprocessing steps. Figure 2(a) shows an initial light curve
from Step 1. The red lines represent 10% and 90% quantiles obtained on the moving window. After
deleting outliers through Step 2, we obtain Figure 2(b). Next, by following Step 3, we relocate the
minimum point of a light curve at phase 0; subsequently, we can register the light curve. Then we
standardize the light curve at Step 4. Finally, we extend it on the phase domain [-0.5, 1.5], and obtain
a light curve shown in Figure 2(d). Figure 2(c) shows the result of the preprocessing without using
Step 2; the resultant light curve data is contaminated by outliers.

Figure 3 shows an example for Steps 6-8. In Figure 3(a), the blue line is the best fit in Steps 6 and
7. However, from Figure 3(a), we observe that the minimum of estimated function do not locate on the
phases 0 and 1, and the minimum points of light curve data are not identical to those of the estimated
light curve function (blue line). By using the warping function shown in Figure 3(b), we obtain the
red registered light curve function shown in Figure 3(c), which will be used for further analysis.

Once we obtain the registered light curve functions of all candidate variable stars by the above
preprocessing procedure, we apply the three functional classification procedures listed in Table 2 to
the light curve functions. Here, we take a cross-validated classification step. Specifically, (i) first
select a curve and treat it as a new one; (ii) determine the class by applying the above classification
methods to the remaining curves; and (iii) obtain the predicted class (PC) and then compare it with
the observed one (OC). In this manner, all curves are applied for classification.

4. Data and Classification Results

There have been numerous photometric surveys such as MACHO (Hegland et al., 2001), Optical
Gravitational Lensing Experiment (OGLE) (Sarro et al., 2009), and STARE. Each survey has its
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Figure 2: An example of preprocessing for obtaining light curves in the group of BCEP

(b) (©

value

T T T T T T
-05 00 05 10 15 -05 00 05 10 15 -05 00 05 10 15

phase time phase

Figure 3: An example of functional registration

own specific goals and enormous amount of brightness time series for variable stars can be produced
subordinately. The STARE project provides complete survey of variable stars. Since the classification
results can be verified, we apply our proposed method to the data in the STARE project.

The STARE project contains 209 relatively well identified stars and 57 suspected variables. For
each time series of brightness, the estimated period is also suggested. The details of variable types can
be found in the website of the project (http://www.hao.ucar.edu/research/stare/stare.html). Variable
stars are noted with some types, which are EA, EB, EW, and E (indeterminate type) in eclipsing
binaries; DCEP, BCEP, CEP (indeterminate type), DSCT, and SRV in pulsating stars; Ellip, El|Sp,
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Table 2: Variable star classes in the dataset
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Pulsating stars

Eclipsing binaries

type number type number
BCEP 4 EA 14
DSCT 12 EB 13
EW 14

Table 3: Classification matrices of the three functional classification methods according to different input

variables.
0C\ PC Functional PC scores Fourier coefficients Function values
Puls EA EBW Puls EA EBW Puls EA EBW
Puls 16 0 0 13 0 3
QDA EA 0 10 4 0 4 10
EBW 0 3 24 0 5 22
Puls 16 0 0 16 0 0
iisi ty EA 1 11 2 1 13 0
EBW 2 3 22 1 1 25
Puls 16 0 0 16 0 0 16 0 0
FSVM EA 0 9 5 0 10 4 0 11 3
EBW 0 2 25 1 1 25 0 2 25

Table 4: Number of misclassified variable stars

Functional PC scores Fourier coefficients Function values

QDA 7 18 .
NP density 8 . 3
FSVM 7 6 5

and El&Sp in rotating variables; and I (indeterminate type) for poorly studied irregular ones. We
leave 45 SRV type stars out of the analysis because these are obviously classified by their period.
A total of 54 indeterminate types are removed for classification; in addition, we exclude 27 variable
stars whose maximum gap between observations is over 0.1 on the phase domain [0, 1]. We believe
that the limit of observation gap 0.1 is fairly generous choice since it is corresponding to 10% of the
whole domain. We exclude the rotating stars in the analysis since the rotating variable stars seem to
be strong attractors for all types of stars. When some types have a common overlapping pattern (or
have small number of data in each group) classification methods are not applicable. Thus, for the
verification purpose of the proposed procedure, EB and EW in eclipsing binaries are regarded as the
same type denoted by EBW, and BCEP and DSCT are combined as the same type denoted by Puls.
We conduct the proposed functional classification method with three distant classes of Puls, EA, and
EBW in Table 2, and evaluate the practical performance.

To evaluate its performance, we take a cross-validated classification step. Specifically, (i) select a
curve and treat it as a new one; (ii) determine the class by applying the aforementioned classification
methods to the remaining curves; and (iii) obtain the predicted class and then compare it with the
observed one. In this manner, all curves are classified. Table 3 shows the classification results of the
three functional classification methods according to different input variables. The (i, j)" entry of the
matrix denotes frequency of the i’ observed class classified to the j” predicted class. Thus, the off-
diagonal entry indicates the misclassified frequency. The numbers of incorrectly classified curves are
summarized in Table 4 according to the functional classification methods. We observe that Bayesian
classifier using nonparametric density estimation with fitted function values as input variable produces
the smallest number of misclassification.



Functional Data Classification of Variable Stars 279

5. Concluding Remarks

In this paper, we have proposed classification procedures of variable stars based on functional data
analysis with the estimation of light curve. For the FDA-based approach, we have considered three
classification methods with three different input variables of function features representing light cure
shape. From the analysis with variable stars in STARE database, we may be able to draw the con-
clusions that the proposed method is capable of efficiently classifying stars, and provide an automatic
procedure that can handle massive database.

Appendix: Functional Classification Method

We first consider a Bayesian classification method. Let Y be a categorical response valued in G =
{1,...,G}, X be a functional random variable, and x denote a realization of X. In the viewpoint of
regression, the classification procedure for a signal x to be in a group g can be described as follows:
(1) Suppose that there exist density functions f, for the different G groups with prior 7., g = 1,...,G.
Then we calculate the posterior probability that a signal x belongs to the g class given as

fe(om,
S o

(2) We classify the signal x to the group g if f,(x)m, > fu(x)m, for all A # g, that is, the quantity
fo(X)m, is the largest.

There are several approaches to determine the density f,(x) for functional data. First, for X valued
in a normed vector space (S, || - |[), x can be expressed as x = Zj‘;l &Y ; with a complete orthonormal
basis {1,¥2, ...}, and the coeflicients (£1,&,,...) serve as surrogates of x for purposes of density
estimation and classification (Hall et al., 2001). In order to work in m-dimensional Euclidean space
effectively, the expansion x = Z}’il & should be truncated as x = 21’7':1 &y ;, and the choice of an m-
dimensional subspace should capture the greatest part of X. Hall et al. (2001) showed that Karhunen-
Loéve expansion of X achieves this goal and that the basis derived by principal components analysis
in FDA is the empirical counterpart of Karhunen-Loéve expansion. Hence, we can use the functional
PC scores/coefficients for purposes of density estimation and classification. Finally, a kernel estimator
of the density of X at x = (&,...,&,) is given by

pglx) =

n

Bule) = 2 RO [ - 57, a1

i=1

where X denotes an m-dimensional vector of coefficients for X, & is a bandwidth, K is a kernel
and each datum X;, i = 1,...,n is independently and identically distributed (i.i.d.) as X. With the
dimension reduction by functional principal components analysis (FPCA) and by applying the non-
parametric density estimator in (A.1) to each group, curves can be classified. Instead of nonparametric
density estimation, quadratic discriminant analysis (QDA) can be used for the computational reason
as in Hall et al. (2001).

Second, let X take its values in the semi-metric vector space (S, d), then the nonparametric density
estimator of group g can be given by

I =g K (h'd(X, )
Y, K(h'd(X;, x)

fen(x) = (A2)
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where (X1, 7Y)),...,(X,, Y,) are i.i.d. (Ferraty and Vieu, 2003). The dimension reduction and den-
sity estimator in Hall er al. (2001) can be considered as special cases of those in Ferraty and Vieu
(2003). Two semi-metrics, which are based on FPCA and successive derivatives, are introduced with
theoretical advances and computational issues in Ferraty and Vieu (2003). Through this semi-metric
approach, the estimated function values or derivative values can be used as input for classification as
well as functional PC scores.

Besides Bayesian classifier, we consider several other classification methods, such as k-NN clas-
sification or SVM. The functional usage with theoretical supports can be summarized as follows: Let
x be an infinite-dimensional, separable Hilbert space with inner product (-, -) and norm || - ||. When
X takes values in y, it may be expressed as X = Z;‘;l E ¥, where {wj}jil is a complete, orthonormal
system of y and E; = (X, ;). Since any infinite-dimensional, separable Hilbert space y is isomorphic
with &, = {(x1,x2,...) : Z}’il x? < +oo}, knowing X is equivalent to knowing (2, 5;,...). In Biau
et al. (2005), hence, a classification procedure by coupling X" = (Z,,...,ZE,) with &-NN or QDA
is suggested with discussing the selection of the dimension m and the consistency of estimator. They
used Fourier basis as ¢ for data analysis. For simplicity, we consider only the classification based on
QDA in this paper.

In the same Hilbert space, the functional SVM is introduced in Rossi and Villa (2006) with theo-
retical discussion of consistency. We consider an orthonormal basis {1/} ;-1,. s and the d-dimensional
subspace V,; of y. The transformation Py, is defined as the orthogonal projection on V, that is,
Py,(x) = Z‘;zl(x, Wi ;. Since (Vy4,(-,-),) is isomorphic to (R?, (-, )pa), a standard RY SVM can be
used on the vector of coefficients ((x,¥),...,{x,¥,)). Hence, the functional principal components,
the orthogonal Fourier or wavelet basis can be used for SVM. However, as in nonlinear SVM for
multivariate data analysis, the original data can be transformed from the given Hilbert space y into
another Hilbert space H, where a linear SVM can be constructed, using a feature map ¢. The kernel
in the process of SVM can be represented as K(x;, x;) = ($(x;), #(x;))u for a given pair (H, ¢), but
we do not need to know (H, ¢) directly and it is enough to only provide the kernel function K, which
is well known in SVM theory. Hence, as various Kernel can be used with the orthogonal Fourier or
wavelet basis, the common B-spline basis can also be used in this approach. Practically, the evaluated
function or derivative values obtained by a set of common B-spline basis can be input in functional
SVM (Rossi and Villa, 2006).
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