• Title/Summary/Keyword: applicability domain

Search Result 219, Processing Time 0.021 seconds

Domain Analysis of Device Drivers Using Code Clone Detection Method

  • Ma, Yu-Seung;Woo, Duk-Kyun
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.394-402
    • /
    • 2008
  • Domain analysis is the process of analyzing related software systems in a domain to find their common and variable parts. In the case of device drivers, they are highly suitable for domain analysis because device drivers of the same domain are implemented similarly for each device and each system that they support. Considering this characteristic, this paper introduces a new approach to the domain analysis of device drivers. Our method uses a code clone detection technique to extract similarity among device drivers of the same domain. To examine the applicability of our method, we investigated whole device drivers of a Linux source. Results showed that many reusable similar codes can be discerned by the code clone detection method. We also investigated if our method is applicable to other kernel sources. However, the results show that the code clone detection method is not useful for the domain analysis of all kernel sources. That is, the applicability of the code clone detection method to domain analysis is a peculiar feature of device drivers.

  • PDF

Effective Analysis of Incremental Forming Process using the Automatic Expansion of Domain Scheme (자동 영역확장법을 이용한 점진 성형공정의 효율적 해석)

  • Lee K.H.;Lee S.R.;Hong J.T.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.812-815
    • /
    • 2005
  • The incremental forming process employs several tens or hundreds of continuous local strokes, so the entire process is difficult to analyze due to much computation time and large computer memory. The objective of this work is to propose a new numerical scheme of the finite element method, automatic expansion of domain (AED), and to reduce computation time and computer memory. In the AED scheme, an effective analysis domain in each local forming step is defined and then the domain is automatically expanded in accordance with the repeated process. In order to verify the validity of the criterion for the AED scheme and the applicability of the AED scheme, two-dimensional incremental plane-strain forging process is first analyzed using the proposed scheme with various criteria and full domain. In addition, three-dimensional incremental radial forging process is analyzed to verify the applicability of the proposed scheme to a practical incremental forging process.

  • PDF

A Study on Performance Improvements about Duct of Smoke Control System Combined with Air-Conditioning Equipment (공기조화설비 겸용 제연설비 덕트의 성능개선을 위한 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 2021
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Investigation of random fatigue life prediction based on artificial neural network

  • Jie Xu;Chongyang Liu;Xingzhi Huang;Yaolei Zhang;Haibo Zhou;Hehuan Lian
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.435-449
    • /
    • 2023
  • Time domain method and frequency domain method are commonly used in the current fatigue life calculation theory. The time domain method has complicated procedures and needs a large amount of calculation, while the frequency domain method has poor applicability to different materials and different spectrum, and improper selection of spectrum model will lead to large errors. Considering that artificial neural network has strong ability of nonlinear mapping and generalization, this paper applied this technique to random fatigue life prediction, and the effect of average stress was taken into account, thereby achieving more accurate prediction result of random fatigue life.

A Practical Hybird Approach for Nonlinear Time-Domain Analysis of Soil-Structure Interaction (지반-구조물 상호작용의 비선형 시간영역해석을 위한 실용적 복합기법)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.132-139
    • /
    • 2000
  • This paper presents a new hybrid approach for nonlinear dynamic analysis of the soil-structure interaction system in the time domain. It employs, in a practical manner, a linear SSI program and a general-purpose nonlinear finite element program. In order to demonstrate the validity and applicability of the proposed method, seismic response analyses are carried out for a free-field problem and a 2-D subway station. The results indicate that the proposed methodology gives reasonable solution for the linear/nonlinear SSI problem utilizing a general-purpose finite element program. Some further studies will endorse the applicability of the method to various soil-structure interaction problems.

  • PDF

EXTENDING THE APPLICABILITY OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING UNDERDETERMINED NONLINEAR LEAST SQUARES PROBLEMS

  • Argyros, Ioannis Konstantinos;Silva, Gilson do Nascimento
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.311-327
    • /
    • 2019
  • The aim of this paper is to extend the applicability of Gauss-Newton method for solving underdetermined nonlinear least squares problems in cases not covered before. The novelty of the paper is the introduction of a restricted convergence domain. We find a more precise location where the Gauss-Newton iterates lie than in earlier studies. Consequently the Lipschitz constants are at least as small as the ones used before. This way and under the same computational cost, we extend the local as well the semilocal convergence of Gauss-Newton method. The new developmentes are obtained under the same computational cost as in earlier studies, since the new Lipschitz constants are special cases of the constants used before. Numerical examples further justify the theoretical results.

QSPR model for the boiling point of diverse organic compounds with applicability domain (다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역)

  • Shin, Seong Eun;Cha, Ji Young;Kim, Kwang-Yon;No, Kyoung Tai
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.270-277
    • /
    • 2015
  • Boiling point (BP) is one of the most fundamental physicochemical properties of organic compounds to characterize and identify the thermal characteristics of target compounds. Previously developed QSPR equations, however, still had some limitation for the specific compounds, like high-energy molecules, mainly because of the lack of experimental data and less coverage. A large BP dataset of 5,923 solid organic compounds was finally secured in this study, after dedicated pre-filtration of experimental data from different sources, mostly consisting of compounds not only from common organic molecules but also from some specially used molecules, and those dataset was used to build the new BP prediction model. Various machine learning methods were performed for newly collected data based on meaningful 2D descriptor set. Results of combined check showed acceptable validity and robustness of our models, and consensus approaches of each model were also performed. Applicability domain of BP prediction model was shown based on descriptor of training set.

Evaluation on the Applicability of Monitoring for Urban Railway Structure Using Brillouin Optical Correlation Domain Analysis Based Distributed Optical Fiber Sensor (브릴루앙 광 상관영역 기반 분포형 광섬유를 활용한 도시철도 구조물의 모니터링 적용성 평가)

  • Chae, Deokho;Lee, Sungjin;Lee, Jin-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.13-19
    • /
    • 2018
  • Recently, there have been various problems aroused on the domestic infrastructures as the domestic cities become old. Accordingly, the national concerns grow on the urban railway and the related structures, which brings the national interests are brought on the research on the maintenance and rehabilitation of the old infrastructures. The underground structure of urban railway are checked with the strain gages or fiber brag grating (FBG) sensors on the railway. However, these methods are known to have resolution limitations on the investigations of the specified abnormal section. Therefore, the applicability of the Brillouin Optical Correlation Domain Analysis (BOCDA) based distributed fiber optic sensor system on the railway was evaluated in this study. The constructed BOCDA fiber optic sensor system shows high resolution of 10, 20, 50, 100 cm and capability of continuous monitoring on overall or specified section within 2 km range. The applicability evaluation was performed on the 250 m distribution of fiber optic sensors abandoned railway for continuous monitoring. The applicability of the system on the specified area was evaluated with wheel load testing. As a result, data loss tends to increase with the reduction of spatial resolution from 1.0 m to 0.1 m. Even though the measuring speed is reduced with lower spatial resolution, data accuracy increases on the location and deformation. The system can be applicable to various structures if the proper distribution method is invented later.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni;Hiroshi, Katsuchi;Hitoshi, Yamada
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.323-336
    • /
    • 2022
  • This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.